Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2304966120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878720

RESUMO

Messenger RNA (mRNA)-based therapeutics are transforming the landscapes of medicine, yet targeted delivery of mRNA to specific cell types while minimizing off-target accumulation remains challenging for mRNA-mediated therapy. In this study, we report an innovative design of a cationic lipid- and hyaluronic acid-based, dual-targeted mRNA nanoformulation that can display the desirable stability and efficiently transfect the targeted proteins into lung tissues. More importantly, the optimized dual-targeted mRNA nanoparticles (NPs) can not only accumulate primarily in lung tumor cells and inflammatory macrophages after inhalation delivery but also efficiently express any desirable proteins (e.g., p53 tumor suppressor for therapy, as well as luciferase and green fluorescence protein for imaging as examples in this study) and achieve efficacious lung tissue transfection in vivo. Overall, our findings provide proof-of-principle evidence for the design and use of dual-targeted mRNA NPs in homing to specific cell types to up-regulate target proteins in lung tissues, which may hold great potential for the future development of mRNA-based inhaled medicines or vaccines in treating various lung-related diseases.


Assuntos
Nanopartículas , Neoplasias , RNA Mensageiro/genética , Transfecção , Pulmão , Macrófagos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39231880

RESUMO

INTRODUCTION: Accurate diagnosis of liver fibrosis is crucial for preventing cirrhosis and liver tumors. Liver fibrosis is driven by activated hepatic stellate cells (HSCs) with elevated CD44 expression. We developed hyaluronic acid (HA)-coated gadolinium-based nanoprobes to specifically target CD44 for diagnosing liver fibrosis using T1-weighted magnetic resonance imaging (MRI). MATERIALS AND METHODS: NaGdF4 nanoparticles (NPs) were synthesized via thermal decomposition and modified with polyethylene glycol (PEG) to obtain non-targeting NaGdF4@PEG NPs. These were subsequently coated with HA to target HSCs, resulting in liver fibrosis-targeting NaGdF4@PEG@HA nanoprobes. Characterization includedd transmission electron microscopy and X-ray diffraction. Cell viability was assessed using the Cell Counting Kit-8 (CCK-8). Internalization of NaGdF4@PEG@HA nanoprobes by mouse HSCs JS1 cells via ligand-receptor interaction was observed using flow cytometry and confocal laser scanning microscopy (CLSM). Liver fibrosis was induced in C57BL/6 mice using a methionine-choline deficient (MCD) diet. MRI performance and nanoprobe distribution in fibrotic and normal livers were analyzed using a GE Discovery 3.0T MR 750 scanner. RESULTS: NaGdF4@PEG@HA nanoprobes exhibited homogeneous morphology, low toxicity, and a high T1 relaxation rate (7.645 mM⁻¹s⁻¹). CLSM and flow cytometry demonstrated effective phagocytosis of NaGdF4@PEG@HA nanoprobes by JS1 cells compared to NaGdF4@PEG. MRI scans revealed higher T1 signals in fibrotic livers compared to normal livers after injection of NaGdF4@PEG@HA. NaGdF4@PEG@HA demonstrated higher targeting ability in fibrotic mice. CONCLUSIONS: NaGdF4@PEG@HA nanoprobes effectively target HSCs with high T1 relaxation rate, facilitating efficient MRI diagnosis of liver fibrosis.

3.
Bioprocess Biosyst Eng ; 47(7): 1095-1105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847888

RESUMO

In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.


Assuntos
Bacillus , Biofilmes , Reatores Biológicos , Biofilmes/crescimento & desenvolvimento , Bacillus/metabolismo , Bacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Meios de Cultura , Fermentação , Temperatura , Peptídeos Cíclicos
4.
Chem Rev ; 121(4): 1981-2019, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33492935

RESUMO

Since the first connection between Fenton chemistry and biomedicine, numerous studies have been presented in this field. Comprehensive presentation of the guidance from Fenton chemistry and a summary of its representative applications in cancer therapy would help us understand and promote the further development of this field. This comprehensive review first supplies basic information regarding Fenton chemistry, including Fenton reactions and Fenton-like reactions. Subsequently, the current progress of Fenton chemistry is discussed, with some corresponding representative examples presented. Furthermore, the current strategies for further optimizing the performance of chemodynamic therapy guided by Fenton chemistry are highlighted. Most importantly, future perspectives on the combination of biomedicine with Fenton chemistry or a wider range of catalytic chemistry approaches are presented. We hope that this review will attract positive attention in the chemistry, materials science, and biomedicine fields and further tighten their connections.


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Ferro/química , Animais , Catálise , Humanos , Radical Hidroxila/química , Nanoestruturas/química , Neoplasias/metabolismo , Neoplasias/terapia , Oxirredução
5.
Proc Natl Acad Sci U S A ; 117(46): 28667-28677, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139557

RESUMO

The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.


Assuntos
Pé Diabético/terapia , Fósforo/administração & dosagem , Terapia Fototérmica , Materiais Inteligentes/administração & dosagem , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/administração & dosagem , Géis , Células Endoteliais da Veia Umbilical Humana , Humanos , Lidocaína/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Trombina/administração & dosagem
6.
Chem Soc Rev ; 51(10): 3828-3845, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35437544

RESUMO

The great success achieved by the two highly-effective messenger RNA (mRNA) vaccines during the COVID-19 pandemic highlights the great potential of mRNA technology. Through the evolution of mRNA technology, chemistry has played an important role from mRNA modification to the synthesis of mRNA delivery platforms, which allows various applications of mRNA to be achieved both in vitro and in vivo. In this tutorial review, we provide a summary and discussion on the significant progress of emerging mRNA technologies, as well as the underlying chemical designs and principles. Various nanoparticle (NP)-based delivery strategies including protein-mRNA complex, lipid-based carriers, polymer-based carriers, and hybrid carriers for the efficient delivery of mRNA molecules are presented. Furthermore, typical mRNA delivery platforms for various biomedical applications (e.g., functional protein expression, vaccines, cancer immunotherapy, and genome editing) are highlighted. Finally, our insights into the challenges and future development towards clinical translation of these mRNA technologies are provided.


Assuntos
COVID-19 , Nanopartículas , COVID-19/terapia , Humanos , Imunoterapia , Nanopartículas/química , Pandemias , Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Basic Microbiol ; 63(2): 179-189, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36515292

RESUMO

Bacillus subtilis, as a biocontrol bacterium, possess a variety of biological functions and the capacity to control plant pathogens. Iturin A is a biosurfactant with broad-spectrum antifungal activity produced by fermentation of B. subtilis. In this study, the dynamic parameters of solid-state fermentation (SSF) and submerged fermentation (SMF) of Bacillus velezensis ND were compared, and a method for producing iturin A with a yield of 12.46 g/kg utilizing SSF was proposed. It has significant advantages over SMF and has the highest yield of all previously reported studies. B. velezensis ND also contains protease activity, cellulase activity, iron-carrying activity, the ability to synthesis 3-indoleacetic acid (IAA), fixation nitrogen, and degrade phosphorus. In cotton pot experiments, it can effectively increase cotton growth and minimize Verticillium wilt. This strain's superior fermentation efficiency, biological function, and biocontrol ability are sufficient to demonstrate its promise for the development and use of biocontrol agents.


Assuntos
Bacillus , Agentes de Controle Biológico , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/metabolismo , Peptídeos Cíclicos
8.
J Nanobiotechnology ; 20(1): 118, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264205

RESUMO

Abnormal iron metabolism, mitochondrial dysfunction and the derived oxidative damage are the main pathogeneses of Friedrich's ataxia (FRDA), a single-gene inherited recessive neurodegenerative disease characterized by progressive cerebellar and sensory ataxia. This disease is caused by frataxin (FXN) mutation, which reduces FXN expression and impairs iron sulfur cluster biogenesis. To date, there is no effective therapy to treat this condition. Curcumin is proposed harboring excellent ability to resist oxidative stress through Nrf2 activation and its newly found ability to chelate iron. However, its limitation is its poor water solubility and permeability. Here, we synthesized slow-release nanoparticles (NPs) by loading curcumin (Cur) into silk fibroin (SF) to form NPs with an average size of 150 nm (Cur@SF NPs), which exhibited satisfactory therapeutic effects on the improvement of FRDA manifestation in lymphoblasts (1 µM) derived from FRDA patients and in YG8R mice (150 mg/kg/5 days). Cur@SF NPs not only removed iron from the heart and diminished oxidative stress in general but also potentiate iron-sulfur cluster biogenesis, which compensates FXN deficiency to improve the morphology and function of mitochondria. Cur@SF NPs showed a significant advantage in neuron and myocardial function, thereby improving FRDA mouse behavior scores. These data encourage us to propose that Cur@SF NPs are a promising therapeutic compound in the application of FRDA disease.


Assuntos
Curcumina , Fibroínas , Ataxia de Friedreich , Nanopartículas , Doenças Neurodegenerativas , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Quelantes de Ferro , Camundongos
9.
Chem Soc Rev ; 50(4): 2260-2279, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367452

RESUMO

Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities. Furthermore, advances in the modern materials science and nonotechnology have stimulated a revolution in other newly discovered forms of pnictogens-phosphorene, arsenene, antimonene, and bismuthine (layered pnictogens). Based on their favorable optoelectronic properties, layered pnictogens have shown dramatic superiority as emerging photonic nanomedicines for the treatment of various diseases. This tutorial review outlines the history and mechanism of action of ancient pnictogen-based drugs (e.g., arsenical compounds in traditional Chinese medicine) and their repurposing into modern therapeutics. Then, the revolutionary use of emerging layered pnictogens as photonic nanomedicines, alongside assessments of their in vivo biosafety, is discussed. Finally, the challenges to further development of pnictogens are set forth and insights for further exploration of their appealing properties are offered. This tutorial review may also provide some deep insights into the fields of integrated traditional Chinese and Western medicines from the perspective of materials science and nanotechnology.


Assuntos
Antimônio/química , Arsenicais/química , Bismuto/química , Nanoestruturas/química , Preparações Farmacêuticas/química , Compostos de Fósforo/química , Animais , Antimônio/farmacologia , Arsenicais/farmacologia , Materiais Biocompatíveis/química , Bismuto/farmacologia , Humanos , Imunoterapia , Estrutura Molecular , Nanomedicina , Dispositivos Ópticos , Compostos de Fósforo/farmacologia , Fototerapia , Ligação Proteica , Radioterapia
10.
Nano Lett ; 21(22): 9706-9714, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34723546

RESUMO

RNA interference (RNAi) is a powerful approach in the treatment of various diseases including cancers. The clinical translation of small interfering RNA (siRNA)-based therapy requires safe and efficient delivery vehicles. Here, we report a siRNA nanogels (NG)-based delivery vehicle, which is driven directly by the intercalation between nucleic acid bis-intercalator and siRNA molecules. The intercalation-based siRNA NG exhibits good physiological stability and can enter cells efficiently via different endocytosis pathways. Furthermore, the siRNA NG can not only silence the target genes in vitro but also significantly inhibit the tumor growth in vivo. Therefore, this study provides an intercalation-based strategy for the development of a siRNA delivery platform for cancer therapy. To the best of our knowledge, this is the first report of the intercalation-driven siRNA NG.


Assuntos
Neoplasias , Humanos , Nanogéis , Neoplasias/genética , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
11.
Small ; 17(28): e2100003, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110694

RESUMO

At present, tumor diagnosis is performed using common procedures, which are slow, costly, and still presenting difficulties in diagnosing tumors at their early stage. Tumor therapeutic methods also mainly rely on large-scale equipment or non-intelligent treatment approaches. Thus, an early and accurate tumor diagnosis and personalized treatment may represent the best treatment option for a successful result, and the efforts in finding them are still in progress and mainly focusing on non-destructive, integrated, and multiple technologies. These objectives can be achieved with the development of advanced devices and smart technology that represent the topic of the current investigations. Therefore, this review summarizes the progress in tumor diagnosis and therapy and briefly explains the advantages and disadvantages of the described microdevices, finally proposing advanced micro smart devices as the future development trend for tumor diagnosis and therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia
12.
Angew Chem Int Ed Engl ; 60(16): 8905-8912, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33527642

RESUMO

The local electron density of an atom is one key factor that determines its chemical properties. Regulating electron density can promote the atom's reactivity and so reduce the reaction activation energy, which is highly desired in many chemical applications. Herein, we report an intra-crystalline electron lever strategy, which can regulate the electron density of reaction centre atoms via manipulating ambient lattice states, for Fenton activity improvement. Typically, with the assistance of ultrasound, the Mn4+ -O-Fe3+ bond in BiFe0.97 Mn0.03 O3 perovskite nanocrystals can drive valence electrons and free electrons to accumulate on Fe atoms by a polarization electric field originated from the designed lattice strain. The increase of electron density significantly improves the catalytic activity of Fe, decreasing the activation energy of BiFe0.97 Mn0.03 O3 -mediated Fenton reaction by 52.55 %, and increasing the . OH yield by 9.21-fold. This study provides a new way to understand the sono-Fenton chemistry, and the increased . OH production enables a highly effective chemodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Compostos de Cálcio/química , Elétrons , Nanopartículas/química , Neoplasias/tratamento farmacológico , Óxidos/química , Terapia Fototérmica , Titânio/química , Antineoplásicos/química , Compostos de Cálcio/metabolismo , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Neoplasias/metabolismo , Óxidos/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Titânio/metabolismo
13.
Angew Chem Int Ed Engl ; 60(13): 7155-7164, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434327

RESUMO

Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a superior modality for cancer treatment owing to the non-invasiveness and high tissue-penetrating depth. However, developing biocompatible nanomaterial-based sonosensitizers with efficient SDT capability remains challenging. Here, we employed a liquid-phase exfoliation strategy to obtain a new type of two-dimensional (2D) stanene-based nanosheets (SnNSs) with a band gap of 2.3 eV, which is narrower than those of the most extensively studied nano-sonosensitizers, allowing a more efficient US-triggered separation of electron (e- )-hole (h+ ) pairs for reactive oxygen species (ROS) generation. In addition, we discovered that such SnNSs could also serve as robust near-infrared (NIR)-mediated photothermal therapy (PTT) agents owing to their efficient photothermal conversion, and serve as nanocarriers for anticancer drug delivery owing to the inherent 2D layered structure. This study not only presents general nanoplatforms for SDT-enhanced combination cancer therapy, but also highlights the utility of 2D SnNSs to the field of nanomedicine.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/terapia , Terapia Fototérmica , Sesquiterpenos/química , Terapia por Ultrassom , Terapia Combinada , Portadores de Fármacos/química , Humanos , Estrutura Molecular , Nanomedicina , Neoplasias/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Ondas Ultrassônicas
14.
BMC Ecol ; 20(1): 41, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680498

RESUMO

BACKGROUND: The ability of a prey species to assess the risk that a predator poses can have important fitness advantages for the prey species. To better understand predator-prey interactions, more species need to be observed to determine how prey behavioral responses differ in intensity when approached by different types of predators. The plateau pika (Ochotona curzoniae) is preyed upon by all predators occurring in its distribution area. Therefore, it is an ideal species to study anti-predator behavior. In this study, we investigated the intensity of anti-predator behavior of pikas in response to visual cues by using four predator species models in Maqu County on the eastern Qinghai-Tibetan Plateau. RESULTS: The behavioral response metrics, such as Flight Initiation Distance (FID), the hiding time and the percentage of vigilance were significantly different when exposed to a Tibetan fox, a wolf, a Saker falcon and a large-billed crow, respectively. Pikas showed a stronger response to Saker falcons compared to any of the other predators. CONCLUSIONS: Our results showed that pikas alter their behavioral (such as FID, the hiding time and the vigilance) response intensity to optimally balance the benefits when exposed to different taxidermy predator species models. We conclude that pikas are able to assess their actual risk of predation and show a threat-sensitive behavioral response.


Assuntos
Lagomorpha , Animais , Medição de Risco
15.
Angew Chem Int Ed Engl ; 59(45): 19787-19795, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32705745

RESUMO

Diabetes mellitus is a lifelong metabolic disease that requires frequent subcutaneous injections of insulin. However, this method of administration can be associated with patient discomfort and local tissue infection. Oral delivery of insulin has been pursued as a more convenient method for diabetes treatment, given its likely superior patient compliance and convenience as well as cost-effectiveness. However, various biological barriers hinder the clinical translation of oral insulin. The rapid development of nanotechnology over the last decade offers great promise in improving the bioavailability of oral insulin. This Minireview provides an overview of biological barriers to oral insulin delivery, summarizes significant technological advances, and outlines future perspectives in oral insulin formulations as well as their hypoglycaemic effects.


Assuntos
Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Humanos
16.
Acc Chem Res ; 51(10): 2502-2511, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30234960

RESUMO

The common existence of hypoxia in solid tumors has been heavily researched because it renders tumors more resistant to most standard therapeutic methods, such as radiotherapy (RT), chemotherapy, and photodynamic therapy (PDT), and is associated with a more malignant phenotype and poor survival in patients with tumors. The development of hypoxia modulation methods for advanced therapeutic activity is therefore of great interest but remains a considerable challenge. Since the significant development of nanotechnology and nanomedicine, functionalized nanomaterials can be exploited as adjuvant "drugs" for these oxygen-dependent standard therapies or as hypoxia initiators for advanced new therapies to solid tumors. In this Account, we summarize our recent studies on the design and synthesis of nanomaterials with a set of desired chemistry benefits achievable by modulating hypoxia, suggesting a valid therapeutic option for tumors. The investigated strategies can be categorized into three groups: The first strategy is based on countering hypoxia. Considering that O2 deficiency is the major obstacle for the oxygen-dependent therapies, we initially developed methods to supply O2 by taking advantage of the hypoxia-responsive properties of nano-MnO2 or nanomaterials' photothermal effects for increased intratumoral blood flow. The second approach is to disregard hypoxia. Possible benefits of nanoagents include reducing/eliminating reliance on O2 or making O2 replacements as adjuvants to standard therapies. To this end, we investigated a nano-upconversion/scintillator with the capacity toup-/down-convert near-infrared light (NIR)/X-ray to luminescence in the ultraviolet/visible region fortype-I PDT with minimized oxygen-tension dependency or developed Fe-based nanomaterials for chemodynamic therapy (CDT) without external energy and oxygen participation for efficient free radical killing of deep tumors. The third strategy involves exploiting hypoxia. The unique biological characteristics of hypoxia are exploited to activate nanoagents for new therapies. To address the discrepancy between the nanoagents' demand and supply within the hypoxia region, a smart "molecule-nano" medicine that stays small-molecule-like in the bloodstream and turns into self-assembled nanovesicles after entry into the hypoxia region was constructed for hypoxia-adaptive photothermal therapy (PTT). In addition to traditional anti-angiogenesis therapy, we prepared Mg2Si nanoparticles by a special self-propagating high-temperature synthesis approach. These nanoparticles can directly remove the intratumoral oxygen via the oxidation reactions of Mg2Si and later efficiently block the rapid reoxygenation via tumor blood vessels by the resultant SiO2 microsheets for cancer starvation therapy. Taken together, these findings indicate that nanomaterials will assume a valuable role for anticancer exploration based on either their properties to make up oxygen deficiency or the use of hypoxia for therapeutic applications.


Assuntos
Hipóxia Celular , Nanoestruturas/química , Animais , Células HeLa , Humanos , Raios Infravermelhos , Silicatos de Magnésio/química , Camundongos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Oxigênio/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Dióxido de Silício/química , Tirapazamina/química , Tirapazamina/uso terapêutico , Transplante Heterólogo
17.
Nano Lett ; 18(9): 5768-5774, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30052464

RESUMO

X-ray-induced photodynamic therapy (X-PDT) has high depth of penetration and has considerable potential for applications in cancer therapy. Scintillators and heavy metals have been adopted to absorb X-rays and transmit the energy to photosensitizers. However, the low efficiency of converting X-rays to reactive oxygen species (ROS) presents a challenge for the use of X-PDT to cure cancer. In this study, a new method based on LiLuF4:Ce@SiO2@Ag3PO4@Pt(IV) nanoparticles (LAPNP) is presented that could be used to enhance the curative effects of X-PDT. To make full use of the fluorescence produced by nanoscintillators (LiLuF4:Ce), a cisplatin prodrug Pt(IV) was utilized as a sacrificial electron acceptor to increase the yield of hydroxyl radicals (·OH) by increasing the separation of electrons and holes in photosensitizers (Ag3PO4). Additionally, cisplatin is produced upon the acceptance of electrons by Pt(IV) and further enhances the damage caused by ·OH. Via two-step amplification, the potential of LAPNP to enhance the effects of X-PDT has been demonstrated.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias/tratamento farmacológico , Fosfatos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Pró-Fármacos/uso terapêutico , Compostos de Prata/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Cério/química , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Elétrons , Fluorescência , Células HeLa , Humanos , Compostos de Lítio/química , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Compostos de Prata/administração & dosagem , Compostos de Prata/farmacologia , Raios X
18.
Angew Chem Int Ed Engl ; 58(4): 946-956, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30048028

RESUMO

Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical (. OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions. Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of . OH generated. Notably, various strategies based on the Fenton reaction have been employed to enhance . OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview. Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area.


Assuntos
Antineoplásicos/farmacologia , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/química , Humanos , Concentração de Íons de Hidrogênio , Nanomedicina/métodos , Neoplasias/metabolismo , Neoplasias/patologia
19.
Small ; 14(3)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168917

RESUMO

Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T1 MR-based nanoprobes, NaGdF4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm-1 s-1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 107 labeled T-cells by T1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas.


Assuntos
Fluoretos/química , Gadolínio/química , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Linfócitos T/química , Linfócitos T/citologia , Animais , Humanos , Estruturas Metalorgânicas
20.
Artigo em Inglês | MEDLINE | ID: mdl-39110330

RESUMO

Bacillus velezensis can produce various secondary metabolites, such as the antibacterial compound iturin A and the coagulation-promoting menaquinone-7 (MK-7). To enhance the economic feasibility of the fermentation process, a co-production strategy, involving the simultaneous production of MK-7 and iturin A by Bacillus velezensis ND, was investigated in this study. Firstly, the effects of cultivation temperature and initial pH on the synthesis of MK-7 and iturin A were investigated. Considering the co-production of iturin A and MK-7, the optimal temperature and pH were determined as 32 °C and 7, respectively. Subsequently, important nutrients for the co-production process were investigated. It was observed that glycerol, soybean meal, yeast extract, and L-glutamate had a significant effect on the co-produce process. An optimal medium composed of glycerol (72.19 mL L-1), L-glutamate (1.4 g L-1), yeast extract (16.88 g L-1), and soybean meal (130.95 g L-1) was obtained by response surface methodology (RSM). This co-produce process was further scaled up in a biofilm reactor, and the maximum concentration of MK-7 and iturin A reached 46.88 mg L-1 and 5.58 g L-1, respectively. Finally, we established an effective method for separately extracting the two metabolites from the fermentation broth. The superiority of this co-production fermentation strategy demonstrates its significant potential for industrial production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA