RESUMO
In total, 160 ticks infesting cattle in the northeast region of Thailand were collected and used for molecular investigation. Three tick species-Rhipicephalus microplus Canestrini, Rhipicephalus haemaphysaloides Supino and Haemaphysalis bispinosa Neumann-were identified based on morphology and DNA sequences of mitochondrial cytochrome c oxidase subunit 1 (CO1) and 16S ribosomal RNA (16S rRNA). In total, 26 and seven unique haplotypes of the CO1 and 16S rRNA genes, respectively, were recovered. Phylogenetic analysis using the CO1 sequence revealed that the R. microplus from northeastern Thailand were grouped into the previously described clades A and C, whereas the 16S rRNA phylogenetic tree assigned all isolates of R. microplus from Northeast Thailand into the previously described clade B. Clade C of the CO1 phylogenetic tree is a new genetic assemblage recently discovered from India and Malaysia, which has now been detected in our study. The haplotype network also demonstrated that R. microplus is divided into two haplogroups corresponding to the assemblage of the CO1 phylogenetic tree. Our findings strongly support the previous genetic assemblage classification and evidence that R. microplus from Northeast Thailand is a species complex comprising at least two genetic assemblages, i.e., clades A and C. However, further investigation is needed and should involve more comprehensive genetic and morphological analyses and cover a larger part of their distributional range throughout Southeast Asia.
Assuntos
Ixodidae , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Variação Genética , Ixodidae/genética , Filogenia , RNA Ribossômico 16S/genética , Rhipicephalus/genética , Tailândia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterináriaRESUMO
Echinostomes are a diverse group of digenetic trematodes that are difficult to classify by predominantly traditional techniques and contain many cryptic species. Application of contemporary genetic/molecular markers can provide an alternative choice for comprehensive classification or systematic analysis. In this study, we successfully characterized the intron 5 of domain 1 of the taurocyamine kinase gene (TkD1Int5) of Artyfechinostomum malayanum and the other two species of the 37 collar-spined group, Echinostoma revolutum and Echinostoma miyagawai, whereas TkD1Int5 of Hypoderaeum conoideum cannot be amplified. High levels of nucleotide polymorphism were detected in TkD1Int5 within E. revolutum and E. miyagawai, but not in A. malayanum. Thus, TkD1Int5 can be potentially used as genetic marker for genetic investigation of E. miyagawai and E. revolutum. We therefore used TkD1Int5 to explore genetic variation within and genetic differentiation between 58 samples of E. miyagawai and five samples of E. revolutum. Heterozygosity was observed in 17 and two samples with 16 and three insertion/deletion (indel) patterns in E. miyagawai and E. revolutum, respectively. Heterozygous samples were then cloned and nucleotide sequence was performed revealing the combined haplotypes in a particular sample. Based on nucleotide variable sites (excluding indels), the 72 E. miyagawai and seven E. revolutum haplotypes were subsequently classified. The haplotype network revealed clear genetic differentiation between E. miyagawai and E. revolutum haplogroups, but no genetic structure correlated with geographical localities was detected. High polymorphism and heterogeneity of the TkD1Int5 sequence found in our study suggest that it can be used in subsequent studies as an alternate independent potential genetic marker to investigate the population genetics, genetic structure, and possible hybridization of the other echinostomes, especially the 37 collar-spined group distributed worldwide.
Assuntos
Echinostoma/genética , Variação Genética , Íntrons/genética , Animais , Echinostoma/classificação , HaplótiposRESUMO
Objective: Evidence exists indicating that mesenchymal stem cells (MSCs) are promising candidate for therapeutic applications. One major obstacle for their clinical use is the biosafety of fetal bovine serum (FBS), which is a crucial part of all media currently used for culture of MSCs. Although some recent studies recommended substituting FBS with human serum (HS) for the expansion of MSCs for clinical use, the characteristics and functional capacity of the expanded cells has only been partially explored. In addition, limited experience indicates that HS may replace FBS in some but not all culture systems. Currently, relatively little is known about using HS instead of FBS for isolation and expansion of placenta derived MSCs. Therefore, this study aimed to compare the exploit of HS and FBS as a supplement in terms of their impact on biological characteristics of MSCs. Material and Method: MSCs derived from placenta were cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum or 10% human serum. The morphology, the expression of MSC markers, the differentiation ability and the proliferation characteristics were examined. Results: The results demonstrated that MSCs cultured in DMEM supplemented with 10% HS had similar characteristics to MSCs cultured in DMEM supplemented with 10% FBS. Interestingly, MSCs cultured in DMEM supplemented with 10% HS had greater expansion potential than that of MSCs cultured in DMEM supplemented with 10% FBS. Conclusion: The results obtained from this study imply some application in the use of HS instead of FBS for expansion of placenta derived MSCs. The HS-expanded MSCs might be useful and safe for use as a therapeutic tool in regenerative medicine.
Assuntos
Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Soro/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Meios de Cultura Livres de Soro , Feminino , Humanos , GravidezRESUMO
Mesenchymal stem cells (MSCs) are multipotent stem cells which are able to differentiate into various lineages including osteoblasts, adipocytes and chondrocytes. They can be isolated from several tissues including bone marrow, adipose tissue, placenta and umbilical cord. Although MSCs could be diferentiated into osteoblasts under appropriate culture condition, their osteogenic differentiation capacity is still not very efficient. Previous studies reported that TNF-α could promote osteogenic differentiation of bone marrow derived MSCs by triggering NF-κB signaling pathway. However, the effect of TNF-α on the osteogenic differentiation ability ofumbilical cord derived MSCs has not been investigated. This study aimed to examine the effect of TNF-α on osteogenic differentiation of umbilical cord derived MSCs (UC-MSCs). The results demonstrated that TNF-α has osteopromotive effect for umbilical cord derived MSCs as evidenced by more matrix mineralization and alkaline phosphatase staining. Interestingly, UC-MSCs cultured in osteogenic differentiation medium supplemented with TNF-α had significantly increase expression of Osteocalcin, the marker of mature osteoblasts, when it was compared to UC-MSCs cultured in osteogenic differentiation medium without TNF-α (p < 0.05). On the contrary, the UC- MSCs cultured in osteogenic differentiation medium supplemented with TNF-α had significantly lower levels of Runx2 and Osterix (the markers of immature osteoblasts) than UC-MSCs cultured with osteogenic differentiation medium without TNF-α. The present study suggested that TNF-α promotes osteogenic differentiation of UC-MSCs. The data add a possibilityfor the use of UC-MSCs as an alternative source for cell replacement therapy in bone defect.
Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Cordão Umbilical/citologia , Tecido Adiposo/citologia , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteocalcina/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de SinaisRESUMO
We conducted this study to identify species and determine the phylogenetic relationships using ribosomal DNA (rDNA) sequences [partial sequences of 28S rDNA and second internal transcribed spacer (IT52)] of echinostomes collected from free-grazing ducks in Phitsanulok Province, Thailand. Four adult echinostomes were morphologically identified as Echinostoma revolutum, 4 as Hypoderaeulm conoideurn and 2 unidentified. Sequences of other species/isolates of echinostomes retrieved from the GenBank database were employed to compare and construct the phylogenetic tree. Three major lineages were found, namely, genus Echinostoma, genus Echinoparyphiulm and genus Hypoderaeulm. One of the unidentified echinostome specimen was 99% identical to and clustered with genus Echinoparyphiurm, whereas the other was located in the "revolutum" roup, but was closely related to the geographical isolates from America rather than from Thailand. This study indicates that 28S rDNA and 1T52 regions are suitable molecular markers for genetic characterization and phylogenetic analysis of echinostomes.
Assuntos
Echinostoma/classificação , Echinostoma/genética , Filogenia , Animais , Sequência de Bases , DNA Ribossômico , Patos , TailândiaRESUMO
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. GBM resists most chemotherapeutic agents, resulting in a high mortality rate in patients. Human mesenchymal stem cells (hMSCs), which are parts of the cancer stroma, have been shown to be involved in the development and progression of GBM. However, different sources of hMSCs might affect GBM cells differently. In the present study, we established hMSCs from placenta (PL-hMSC) and chorion (CH-hMSC) to study the effects of their released soluble factors on the proliferation, migration, invasion, gene expression, and survival of human GBM cells, U251. We found that the soluble factors derived from CH-hMSCs and PL-hMSCs suppressed the proliferation of U251 cells in a dose-dependent manner. In contrast, soluble factors derived from both hMSC sources increased U251 migration without affecting their invasive property. The soluble factors derived from these hMSCs decreased the expression levels of CyclinD1, E2Fs and MYC genes that promote GBM cell proliferation but increased the expression level of TWIST gene, which promotes EMT and GBM cell migration. The functional study suggests that both hMSCs might exert their effects, at least in part, by activating TGF-ß and suppressing Wnt/ß-catenin signaling in U251 cells. Our study provides a better understanding of the interaction between GBM cells and gestational tissue-derived hMSCs. This knowledge might be used to develop safer and more effective stem cell therapy that improves the survival and quality of life of patients with GBM by manipulating the interaction between hMSCs and GBM cells.
Assuntos
Movimento Celular , Glioblastoma , Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta , Via de Sinalização Wnt , Feminino , Humanos , Gravidez , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Córion/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Placenta/citologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Schistosomiasis, which is caused by Schistosoma japonicum and S. mekongi, is a chronic and dangerous widespread disease affecting several countries in Asia. Differentiation between S. japonicum and S. mekongi eggs and/or cercariae via microscopic examination is difficult due to morphological similarities. It is important to identify these etiological agents isolated from animals and humans at the species or genotype level. In this study, a pyrosequencing assay designed to detect S. japonicum and S. mekongi DNA in fecal samples and infected snails was developed and evaluated as an alternative tool to diagnose schistosomiasis. New primers targeting the 18S ribosomal RNA gene were designated for specific amplification. S. japonicum and S. mekongi were identified using a 43-nucleotide pattern of the 18S ribosomal RNA gene and were differentiated using 7 nucleotides within this region. S. japonicum and S. mekongi-infected snails and fecal samples derived from infected mice and rats were differentially detected within a short period of time. The analytical sensitivity of the method enabled the identification of as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and 2 eggs inoculated in 100mg of non-infected fecal sample. To evaluate the comparative efficacy of the assay, identical samples were also analyzed via microscopy and Sanger sequencing. The pyrosequencing technique was found to be superior to the microscopy method and more rapid than the Sanger sequencing method. These results suggest that the pyrosequencing assay is rapid, simple, sensitive and accurate in identifying S. japonicum and S. mekongi in intermediate hosts and fecal samples of the final host.
Assuntos
DNA de Helmintos/isolamento & purificação , RNA Ribossômico 18S/genética , Schistosoma japonicum/isolamento & purificação , Schistosoma/isolamento & purificação , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Cercárias/classificação , Cercárias/genética , Cercárias/isolamento & purificação , DNA de Helmintos/química , Fezes/parasitologia , Humanos , Camundongos , Microesferas , Plasmídeos , Reação em Cadeia da Polimerase , RNA de Helmintos/química , RNA de Helmintos/genética , RNA Ribossômico 18S/química , Ratos , Reprodutibilidade dos Testes , Schistosoma/classificação , Schistosoma/genética , Schistosoma japonicum/classificação , Schistosoma japonicum/genética , Esquistossomose/diagnóstico , Esquistossomose/parasitologia , Alinhamento de Sequência , Análise de Sequência de DNA/normas , Caramujos/parasitologia , Especificidade da EspécieRESUMO
Genetic differentiation between two synonymous echinostomes species, Artyfechinostomum malayanum and Artyfechinostomum sufrartyfex was determined by using the first and second internal transcribed spacers (ITS1 and ITS2), the non-coding region of rDNA as genetic makers. Of the 699 bp of combined ITS1 and ITS2 sequences examined, 18 variable nucleotide positions (2.58 %) were observed. Of these, 17 positions could be used as diagnostic position between these two sibling species, whereas the other one variation was intraspecific variation of A. malayanum. A clade of A. malayanum was closely aligned with A. sufrartyfex and clearly distance from the cluster of other echinostomes. Our results may sufficiently suggest that the current synonymy of these species is not valid.
Assuntos
DNA Espaçador Ribossômico/genética , Echinostomatidae/classificação , Echinostomatidae/genética , Variação Genética , Animais , Análise por Conglomerados , DNA Espaçador Ribossômico/química , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNARESUMO
Free-grazing ducks play a major role in the rural economy of Eastern Asia in the form of egg and meat production. In Thailand, the geographical location, tropical climate conditions and wetland areas of the country are suitable for their husbandry. These environmental factors also favor growth, multiplication, development, survival, and spread of duck parasites. In this study, a total of 90 free-grazing ducks from northern, central, and northeastern regions of Thailand were examined for intestinal helminth parasites, with special emphasis on zoonotic echinostomes. Of these, 51 (56.7%) were infected by one or more species of zoonotic echinostomes, Echinostoma revolutum, Echinoparyphium recurvatum, and Hypoderaeum conoideum. Echinostomes found were identified using morphological criteria when possible. ITS2 sequences were used to identify juvenile and incomplete worms. The prevalence of infection was relatively high in each region, namely, north, central, and northeast region was 63.2%, 54.5%, and 55.3%, respectively. The intensity of infection ranged up to 49 worms/infected duck. Free-grazing ducks clearly play an important role in the life cycle maintenance, spread, and transmission of these medically important echinostomes in Thailand.
Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Patos/parasitologia , Echinostomatidae/isolamento & purificação , Enteropatias/veterinária , Infecções por Trematódeos/veterinária , Animais , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Echinostomatidae/anatomia & histologia , Echinostomatidae/classificação , Echinostomatidae/genética , Helmintíase/epidemiologia , Helmintíase/parasitologia , Enteropatias/epidemiologia , Enteropatias/parasitologia , Enteropatias Parasitárias , Microscopia , Prevalência , Análise de Sequência de DNA , Tailândia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologiaRESUMO
A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2â, 79.0±0.3â, 76.8±0.1â, and 79.9±0.1â, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors.
Assuntos
Sangue/parasitologia , Brugia/isolamento & purificação , Culicidae/parasitologia , Dirofilaria immitis/isolamento & purificação , Parasitologia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Wuchereria bancrofti/isolamento & purificação , Animais , Brugia/classificação , Brugia/genética , Gatos , Dirofilaria immitis/classificação , Dirofilaria immitis/genética , Cães , Humanos , Masculino , RNA de Helmintos/genética , RNA Ribossômico 5S/genética , Sensibilidade e Especificidade , Temperatura de Transição , Wuchereria bancrofti/classificação , Wuchereria bancrofti/genéticaRESUMO
OBJECTIVE: To explore the expression of pluripotent genes in Whartons jelly derived MSCs (WJ-MSCs) and their neuronal differentiation potential. MATERIAL AND METHOD: Gelatinous connective tissues from umbilical cord Wharton's jelly were digested with trypsin and then cultured in Dulbecco's Modified Eagle's Medium. The expressions of typical MSC markers as well as pluripotent markers were examined by flow cytometry and reverse transcription PCR, respectively. MSCs at passage 3 and 5 were used for in vitro adipogenic, osteogenic and neuronal differentiation by incubation with specific induction media. RESULTS: WJ-MSCs could be easily expanded for more than 20 passages while maintaining their undifferentiated state and their marker expression profiles, being positive for typical MSC markers CD90, CD73, and CD105, and being negative for hematopoietic markers CD34 and CD45. Interestingly, the expression of several pluripotent marker genes including Oct4, Rex1, Sox2, and Nanog was detected in early passages of both cultured WJ-MSCs and BM-MSCs. WJ-MSCs were able to differentiate not only to mesodermal cells, such as adipocyte and osteoblast but also the neural-like cells as characterized by neuronal morphology and the expression of neuronal markers including MAP-2, GFAP, beta-tubulin III and Tau. CONCLUSION: The present study demonstrates that WJ-MSCs can be readily obtained and expanded in culture while maintaining their typical MSC characteristics. WJ-MSCs and BM-MSCs also expressed several genes associated with pluripotency and exhibited their plasticity by differentiation toward neuronal-cell lineage. Umbilical cord Wharton's jelly might have potential to become an alternative source of MSC for treating nervous system disorders.
Assuntos
Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Cordão Umbilical/citologia , Diferenciação Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neurônios/citologia , Fotomicrografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Geleia de WhartonRESUMO
Placenta-derived mesenchymal stem cells (PL-MSCs) have therapeutic potential in various clinical contexts due to their regenerative and immunomodulatory properties. However, with increasing age or extensive in vitro culture, their viability and function are gradually lost, thus restricting their therapeutic application. The primary cause of this deterioration is oxidative injury from free radicals. Therefore, enhancing cell viability and restoring cellular repair mechanisms of PL-MSCs in an oxidative stress environment are crucial in this context. Fucoxanthin, a carotenoid derived from brown seaweed, demonstrates antioxidant activity by increasing the production of antioxidant enzymes and lowering the levels of reactive oxygen species (ROS). This study aimed to determine whether fucoxanthin protects PL-MSCs from hydrogen peroxide (H2O2)-induced oxidative stress. After characterization, PL-MSCs were co-treated with fucoxanthin and H2O2 for 24 h (co-treatment) or pre-treated with fucoxanthin for 24 h followed by H2O2 for 24 h (pre-treatment). The effects of fucoxanthin on cell viability and proliferation were examined using an MTT assay. The expression of antioxidant enzymes, PI3K/Akt/Nrf-2 and intracellular ROS production were investigated in fucoxanthin-treated PL-MSCs compared to the untreated group. The gene expression and involvement of specific pathways in the cytoprotective effect of fucoxanthin were investigated by high-throughput NanoString nCounter analysis. The results demonstrated that co-treatment and pre-treatment with fucoxanthin restored the viability and proliferative capacity of PL-MSCs. Fucoxanthin treatment increased the expression of antioxidant enzymes in PL-MSCs cultured under oxidative stress conditions and decreased intracellular ROS accumulation. Markedly, fucoxanthin treatment could restore PI3K/Akt/Nrf-2 expression in H2O2-treated PL-MSCs. High-throughput analysis revealed up-regulation of genes involved in cell survival pathways, including cell cycle and proliferation, DNA damage repair pathways, and down-regulation of genes in apoptosis and autophagy pathways. This study demonstrated that fucoxanthin protects and rescues PL-MSCs from oxidative stress damage through the PI3K/Akt/Nrf-2 pathway. Our data provide the supporting evidence for the use of fucoxanthin as an antioxidant cytoprotective agent to improve the viability and proliferation capacity of PL-MSCs both in vitro and in vivo required to increase the effectiveness of MSC expansion for therapeutic applications.
Assuntos
Antioxidantes , Células-Tronco Mesenquimais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , ApoptoseRESUMO
Blastocystis is a parasitic protist of a variety of hosts, including humans. Mapping the distribution of Blastocystis and its genetic variants across different host species can help us understand the epidemiology of this organism and its role in health and disease. This study aimed to identify subtypes of Blastocystis detected in different animal hosts in Thailand. A total of 825 fecal samples belonging to 18 vertebrate orders, 36 families, 68 genera, and 80 species were collected. Of these, 111 specimens were Blastocystis-positive by culture. Seventy-nine samples were subjected to small subunit (SSU) ribosomal DNA amplification by PCR, and reliable subtype data were obtained for 61 specimens. At least 14 subtypes (ST), namely ST1 to ST10, ST14/ST24/ST25 complex, ST23, ST26, and ST29 were detected. In addition, Blastocystis was found in tortoises. ST1 (3.2%) and ST5 (11.5%) were found in pigs, ST2 (1.6%) and ST3 (3.2%) in non-human primates, ST4 (14.7%) in rodents and ruminants, ST6 (4.9%), ST7 (30%), ST9 (1.6%), and ST29 (1.6%) in birds, ST8 (6.6%) in Green peafowl and East Asian Porcupine, and ST10 (4.9%), ST14/ST24/ST25 (9.8%), ST23 (1.6%) and ST26 (1.6%) in ruminants. The sequence recovered from the elongated tortoises (Indotestudo elongata) (3.2%) was phylogenetically placed within the reptilian cluster of Blastocystis, for which no subtype system is available yet. Of note, we did not obtain Blastocystis sequences from any of the many canids and felids sampled in the study, and our data are in support of host specificity of Blastocystis, according to both colonization and subtype distribution.
Assuntos
Infecções por Blastocystis , Blastocystis , Animais , Blastocystis/classificação , Blastocystis/genética , Blastocystis/isolamento & purificação , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/parasitologia , Especificidade de Hospedeiro , Tailândia/epidemiologia , Filogenia , Prevalência , DNA Ribossômico/genéticaRESUMO
Opisthorchiasis and clonorchiasis are prevalent in Southeast and Far-East Asia, which are caused by the group 1 carcinogenic liver flukes Opisthorchis viverrini sensu lato and Clonorchis sinensis infection. There have been comprehensive investigations of systematics and genetic variation of these liver flukes. Previous studies have shown that O. viverrini is a species complex, called "O. viverrini sensu lato". More comprehensive investigations of molecular systematics and population genetics of each of the species that make up the species complex are required. Thus, other polymorphic genetic markers need to be developed. Therefore, this study aimed to characterize the intron regions of taurocyamine kinase gene (TK) to examine the genetic variation and population genetics of O. viverrini and C. sinensis collected from different geographical isolates and from a range of animal hosts. We screened seven intron regions embedded in TK. Of these, we selected an intron 5 of domain 1 (TkD1Int5) region to investigate the genetic variation and population genetics of theses liver flukes. The high nucleotide and haplotype diversity of TkD1Int5 was detected in O. viverrine. Heterozygosity with several insertion/deletion (indel) regions were detected in TkD1Int5 of the O. viverrine samples, whereas only an indel nucleotide was detected in one C. sinensis sample. Several O. viverrine samples contained three different haplotypes within a particular heterozygous sample. There were no genetic differences between C. sinensis isolated from various animal host. Heterozygous patterns specifically detected in humans was observed in C. sinensis. Thus, TkD1Int5 is a high polymorphic genetic marker, which could be an alternative marker for further population genetic investigations of these carcinogenic liver flukes and other related species from a wide geographical distribution and variety of animal hosts.
RESUMO
Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células-Tronco Mesenquimais , Gravidez , Animais , Camundongos , Humanos , Feminino , Interleucina-6/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Âmnio/metabolismo , Camundongos Nus , Proliferação de Células , Placenta/metabolismo , Colangiocarcinoma/patologia , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Apoptose , Células-Tronco Mesenquimais/metabolismo , Janus Quinase 2/metabolismoRESUMO
PCR amplification coupled with pyrosequencing was used to measure molecular markers that could be used to detect and differentiate Plasmodium falciparum and Plasmodium vivax in human blood samples. The detection rates were in agreement with the results of Giemsa-stained film microscopy, which is the current gold standard for detection. This method provides an exciting alternative for malaria diagnosis.
Assuntos
Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Plasmodium falciparum/genética , Plasmodium vivax/genética , Subunidades Ribossômicas Menores/genética , Sequência de Bases , Diagnóstico Diferencial , Genes de Protozoários , Marcadores Genéticos , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Malária Vivax/sangue , Malária Vivax/parasitologia , Dados de Sequência Molecular , Tipagem Molecular/métodos , Análise de Sequência de DNARESUMO
In type 2 diabetes, the impairment of vascular repair processes and angiogenesis are due to endothelial progenitor cell (EPC) dysfunction. In this study, we established a quantitative methodology to assess EPC function by using an in vitro 5-(6)-carboxyfluorescein diacetate succinimidyl ester-labeling vessel formation assay. The EPCs were cultured in three different glucose concentrations (100, 189.5, and 295.5 mg/dl of D: -glucose) representing normal control and diabetes with either good or poor glycemic control, respectively. We found that the in vitro vessel-forming capacity was impaired in EPCs cultured in high glucose concentrations compared to normal control (43.4 ± 0.8% and 34.7 ± 0.7% vs. 50.8 ± 2.1%). We further studied expression of various genes involved in vessel formation. There was a lower level of angiopoietin 1 gene expression in EPCs cultured in high glucose concentrations. The addition of recombinant angiopoietin 1 significantly increased the vessel-forming capacity of EPCs cultured in high glucose concentration (35.3 ± 2.0% to 48.8 ± 2.7%), whereas the addition of angiopoietin 2 (a competitive inhibitor of angiopoietin 1) impaired the vessel-forming capacity of EPCs cultured in normal glucose concentration (51.8 ± 1.3% to 41.3 ± 0.6%). We conclude that the in vitro vessel-forming capacity of EPCs cultured in high glucose concentration is impaired due to low levels of angiopoietin 1.
Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Glucose/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Angiopoietina-1/farmacologia , Angiopoietina-2/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/fisiopatologia , Células Endoteliais/citologia , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Perfilação da Expressão Gênica , Humanos , Neovascularização Fisiológica/fisiologia , Células-Tronco/citologia , Succinimidas/metabolismoRESUMO
The origin of endothelial progenitor cells (EPCs) in umbilical cord blood (UCB) is unknown. In this study, we explored the origin of UCB-derived EPCs by culturing CD14+ or CD14- subpopulation separately and co-culturing these two subpopulations either with or without transwells. We found no colony formation with CD14+ or CD14- subpopulation alone, but there were EPC colonies observed in direct co-cultures of both subpopulations. Transwell culture system was used to further study the effect of cytokines on EPC colony formation. We observed the presence of EPC colonies derived from CD14- subpopulation in the presence of CD14+ subpopulation in the upper compartment whereas there was no colony generated from CD14+ subpopulation with CD14- subpopulation in the upper compartment. Therefore, CD14- subpopulation is likely to be the origin of EPCs and EPC colony derivation requires cytokines released from CD14+ subpopulation. We further characterized the founding population of UCB-derived EPCs by separating CD14- subpopulation into CD14-/CD34+ and CD14-/CD34- subpopulations. There were colonies observed only in co-cultures of CD14+ with CD14-/CD34+ subpopulation but not with CD14-/CD34- subpopulation either with or without transwells. We screened 42 cytokines involving in angiogenesis using an ELISA array in the supernatant collected from CD14+ compared to CD14- subpopulations. We found consistently the presence of angiogenin1 in the supernatant of CD14+ subpopulation but not in that of CD14- subpopulation. The addition of angiogenin1 in culture of CD14- subpopulation yielded EPC colonies. We conclude that UCB-derived EPCs are confined to CD14-/CD34+ subpopulation and angiogenin1 released from CD14+ subpopulation may be an important factor promoting the EPC colony formation.
Assuntos
Antígenos CD34/imunologia , Células Endoteliais/fisiologia , Sangue Fetal/citologia , Receptores de Lipopolissacarídeos/imunologia , Ribonuclease Pancreático/metabolismo , Células-Tronco/fisiologia , Antígenos CD34/genética , Separação Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Humanos , Recém-Nascido , Leucócitos Mononucleares/citologia , Receptores de Lipopolissacarídeos/genética , Células-Tronco/citologiaRESUMO
Background: Breast cancer is the most frequently diagnosed malignancy among women, resulting from abnormal proliferation of mammary epithelial cells. The highly vascularized nature of breast tissue leads to a high incidence of breast cancer metastases, resulting in a poor survival rate. Previous studies suggest that human mesenchymal stem cells (hMSCs) play essential roles in the growth, metastasis, and drug responses of many cancers, including breast cancer. However, hMSCs from different sources may release different combinations of cytokines that affect breast cancer differently. Methods: In this study, we have isolated hMSCs from the placenta (PL-hMSCs) and the chorion (CH-hMSCs) and determined how these hMSCs affect the proliferation, migration, invasion, and gene expression of two human breast cancer cells, MCF-7 and MDA-MB-231, as well as the possible mechanisms underlying those effects. Results: The results showed that the soluble factors derived from PL-hMSCs and CH-hMSCs inhibited the proliferation of MCF-7 and MDA-MB-231 cells but increased the migration of MDA-MB-231 cells. The study of gene expression showed that PL-hMSCs and CH-hMSCs downregulated the expression levels of the protooncogene CyclinD1 while upregulating the expression levels of tumor suppressor genes, P16 and P21 in MCF-7 and MDA-MB-231 cells. Furthermore, hMSCs from both sources also increased the expression levels of MYC, SNAI1, and TWIST, which promote the epithelial-mesenchymal transition and migration of breast cancer cells in both cell lines. The functional study suggests that the suppressive effect of CH-hMSCs and PL-hMSCs on MCF-7 and MDA-MB231 cell proliferation was mediated, at least in part, through IFN-γ. Conclusions: Our study suggests that CH-hMSCs and PL-hMSCs inhibited breast cancer cell proliferation by negatively regulating CYCLIND1 expression and upregulating the expression of the P16 and P21 genes. In contrast, hMSCs from both sources enhanced breast cancer cell migration, possibly by increasing the expression of MYC, SNAI1, and TWIST genes in those cells.
RESUMO
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.