Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nat Mater ; 23(5): 596-603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418925

RESUMO

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

2.
Nature ; 534(7608): 529-33, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27281223

RESUMO

Polymer cold-drawing is a process in which tensile stress reduces the diameter of a drawn fibre (or thickness of a drawn film) and orients the polymeric chains. Cold-drawing has long been used in industrial applications, including the production of flexible fibres with high tensile strength such as polyester and nylon. However, cold-drawing of a composite structure has been less studied. Here we show that in a multimaterial fibre composed of a brittle core embedded in a ductile polymer cladding, cold-drawing results in a surprising phenomenon: controllable and sequential fragmentation of the core to produce uniformly sized rods along metres of fibre, rather than the expected random or chaotic fragmentation. These embedded structures arise from mechanical-geometric instabilities associated with 'neck' propagation. Embedded, structured multimaterial threads with complex transverse geometry are thus fragmented into a periodic train of rods held stationary in the polymer cladding. These rods can then be easily extracted via selective dissolution of the cladding, or can self-heal by thermal restoration to re-form the brittle thread. Our method is also applicable to composites with flat rather than cylindrical geometries, in which case cold-drawing leads to the break-up of an embedded or coated brittle film into narrow parallel strips that are aligned normally to the drawing axis. A range of materials was explored to establish the universality of this effect, including silicon, germanium, gold, glasses, silk, polystyrene, biodegradable polymers and ice. We observe, and verify through nonlinear finite-element simulations, a linear relationship between the smallest transverse scale and the longitudinal break-up period. These results may lead to the development of dynamical and thermoreversible camouflaging via a nanoscale Venetian-blind effect, and the fabrication of large-area structured surfaces that facilitate high-sensitivity bio-detection.

3.
Appl Opt ; 61(33): 10012-10020, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606834

RESUMO

Optical fibers are the core elements for various fiber-optic applications in communication, lasers, sensors, tweezers, quantum optics, and bio-photonics. Current optical fibers are based on a core-cladding structure with different refractive indices and are mainly fabricated using the stack-draw method. However, such a traditional fabrication method limits the realization of fibers with various advanced optical materials, thereby restricting the utilization of excellent optical properties offered by these materials. In this study, a novel structure for side-array cladding by laser drilling on the side of the fiber with homogeneous material is proposed. Accordingly, the confinement loss, mode characteristics, birefringence, and dispersion of the side-array cladding fiber are investigated based on the numerical simulation performed via the finite element method. Subsequently, an optimal fiber structure is obtained by taking the crystal material as an example. Essentially, our proposed side-array cladding fiber can eliminate the mismatch problem of core-cladding materials in the current stack-draw fabrication method. Potentially, the proposed approach can serve as a standard design and fabrication method of optical fibers with homogeneous material, by utilizing the rapid development of laser processing. In other words, a large number of advanced optical materials can be fabricated into optical fibers with the proposed technique, thus maximizing their technical advantages for different applications.

4.
Opt Express ; 29(22): 35544-35555, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808985

RESUMO

In this work, we obtain extremely low confinement-loss (CL) anti-resonant fibers (ARFs) via swarm intelligence, specifically the particle swarm optimization (PSO) algorithm. We construct a complex search space of ARFs with two layers of cladding and nested tubes. There are three and four structures of cladding tubes in the first and second layer, respectively. The ARFs are optimized by using the PSO algorithm in terms of both the structures and the parameters. The optimal structure is obtained from a total of 415900 ARFs structures, with the lowest CL being 2.839×10-7 dB/m at a wavelength of 1.55 µm. We observe that the number of ARF structures with CL less than 1×10-6 dB/m in our search space is 370. These structures mainly comprise four designs of ARFs. The results show that the optimal ARF structures realized by the PSO algorithm are different from the ARFs reported in the previous literature. This means that the swarm intelligence accelerates the design and invention of ARFs and also provides new insights regarding the ARF structures. This work provides a fast and effective approach to design ARFs with special requirements. In addition to providing high-performance ARF structures, this work transforms the ARF designs from experience-driven to data-driven.

5.
Opt Lett ; 46(6): 1454-1457, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720210

RESUMO

The fundamental mode confinement loss (CL) of anti-resonant hollow-core fiber (ARF) is efficiently predicted by a classification task of machine learning. The structure-parameter vector is utilized to define the sample space of ARFs. The CL of labeled samples at 1550 nm is numerically calculated via the finite element method (FEM). The magnitude of CL is obtained by a classification task via a decision tree and k-nearest neighbors algorithms with the training and test sets generated by 290700 and 32300 labeled samples. The test accuracy, confusion matrices, and the receiver operating characteristic curves have shown that our proposed method is effective for predicting the magnitude of CL with a short computation runtime compared to FEM simulation. The feasibility of predicting other performance parameters by the extension of our method, as well as its ability to generalize outside the tested sample space, is also discussed. It is likely that the proposed sample definition and the use of a classification approach can be adopted for design application beyond efficient prediction of ARF CL and inspire artificial intelligence and data-driven-based research of photonic structures.

6.
Proc Natl Acad Sci U S A ; 113(25): 6839-44, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274070

RESUMO

Scattering of light from dielectric particles whose size is on the order of an optical wavelength underlies a plethora of visual phenomena in nature and is a foundation for optical coatings and paints. Tailoring the internal nanoscale geometry of such "photonic particles" allows tuning their optical scattering characteristics beyond those afforded by their constitutive materials-however, flexible yet scalable processing approaches to produce such particles are lacking. Here, we show that a thermally induced in-fiber fluid instability permits the "digital design" of multimaterial photonic particles: the precise allocation of high refractive-index contrast materials at independently addressable radial and azimuthal coordinates within its 3D architecture. Exploiting this unique capability in all-dielectric systems, we tune the scattering cross-section of equisized particles via radial structuring and induce polarization-sensitive scattering from spherical particles with broken internal rotational symmetry. The scalability of this fabrication strategy promises a generation of optical coatings in which sophisticated functionality is realized at the level of the individual particles.

7.
Nature ; 487(7408): 463-7, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22810590

RESUMO

From drug delivery to chemical and biological catalysis and cosmetics, the need for efficient fabrication pathways for particles over a wide range of sizes, from a variety of materials, and in many different structures has been well established. Here we harness the inherent scalability of fibre production and an in-fibre Plateau-Rayleigh capillary instability for the fabrication of uniformly sized, structured spherical particles spanning an exceptionally wide range of sizes: from 2 mm down to 20 nm. Thermal processing of a multimaterial fibre controllably induces the instability, resulting in a well-ordered, oriented emulsion in three dimensions. The fibre core and cladding correspond to the dispersed and continuous phases, respectively, and are both frozen in situ on cooling, after which the particles are released when needed. By arranging a variety of structures and materials in a macroscopic scaled-up model of the fibre, we produce composite, structured, spherical particles, such as core-shell particles, two-compartment 'Janus' particles, and multi-sectioned 'beach ball' particles. Moreover, producing fibres with a high density of cores allows for an unprecedented level of parallelization. In principle, 10(8) 50-nm cores may be embedded in metres-long, 1-mm-diameter fibre, which can be induced to break up simultaneously throughout its length, into uniformly sized, structured spheres.


Assuntos
Técnicas de Química Sintética/métodos , Microesferas , Nanoestruturas/química , Catálise , Preparações de Ação Retardada , Emulsões/química , Vidro/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Temperatura
8.
Proc Natl Acad Sci U S A ; 110(39): 15549-54, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019468

RESUMO

Polymeric micro- and nanoparticles are becoming a mainstay in biomedicine, medical diagnostics, and therapeutics, where they are used in implementing sensing mechanisms, as imaging contrast agents, and in drug delivery. Current approaches to the fabrication of such particles are typically finely tuned to specific monomer or polymer species, size ranges, and structures. We present a general scalable methodology for fabricating uniformly sized spherical polymeric particles from a wide range of polymers produced with complex internal architectures and continuously tunable diameters extending from the millimeter scale down to 50 nm. Controllable access to such a wide range of sizes enables broad applications in cancer treatment, immunology, and vaccines. Our approach harnesses thermally induced, predictable fluid instabilities in composite core/cladding polymer fibers drawn from a macroscopic scaled-up model called a "preform." Through a stack-and-draw process, we produce fibers containing a multiplicity of identical cylindrical cores made of the polymers of choice embedded in a polymer cladding. The instability leads to the breakup of the initially intact cores, independent of the polymer chemistry, into necklaces of spherical particles held in isolation within the cladding matrix along the entire fiber length. We demonstrate here surface functionalization of the extracted particles for biodetection through specific protein-protein interactions, volumetric encapsulation of a biomaterial in spherical polymeric shells, and the combination of both surface and volumetric functionalities in the same particle. These particles used in distinct modalities may be produced from the desired biocompatible polymer by changing only the geometry of the macroscopic preform from which the fiber is drawn.


Assuntos
Técnicas Biossensoriais/métodos , Composição de Medicamentos/métodos , Nanofibras/química , Polímeros/química , Materiais Biocompatíveis , Emulsões , Corantes Fluorescentes/metabolismo , Nanofibras/ultraestrutura , Proteínas/metabolismo
9.
Opt Express ; 23(18): 23472-83, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368447

RESUMO

This paper reports on the fabrication and characterization of multimaterial chalcogenide fiber tapers that have high numerical apertures (NAs). We first fabricated multimaterial As(2)Se(3)-As(2)S(3) chalcogenide fiber preforms via a modified one-step coextrusion process. The preforms were drawn into multi- and single-mode fibers with high NAs (≈1.45), whose core/cladding diameters were 103/207 and 11/246 µm, respectively. The outer diameter of the fiber was tapered from a few hundred microns to approximately two microns through a self-developed automatic tapering process. Simulation results showed that the zero-dispersion wavelengths (ZDWs) of the tapers were shorter than 2 µm, indicating that the tapers can be conveniently pumped by commercial short wavelength infrared lasers. We also experimentally demonstrated the supercontinuum generation (SCG) in a 15-cm-long multimaterial As(2)Se(3)-As(2)S(3) chalcogenide taper with 1.9 µm core diameter and the ZDW was shifted to 3.3 µm. When pumping the taper with 100 fs short pulses at 3.4 µm, a 20 dB spectral of the generated supercontinuum spans from 1.5 µm to longer than 4.8 µm.

10.
Opt Lett ; 40(19): 4384-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421537

RESUMO

An ordered chalcogenide fiber bundle with a high resolution for infrared imaging was fabricated using a stack-and-draw approach. The fiber bundle consisted of about 810,000 single fibers with an As2S3 glass core of 9 µm in diameter and a polyetherimide (PEI) polymer cladding of 10 µm in diameter. The As2S3/PEI fibers showed good transparency in the 1.5-6.5 µm spectral region. It presented a resolution of ∼45 lp/mm and a crosstalk of ∼2.5%. Fine thermal images of a hot soldering iron tip were delivered through the fiber bundle.


Assuntos
Calcogênios , Raios Infravermelhos , Fibras Ópticas , Imagem Óptica/métodos , Arsenicais/química , Calcogênios/química , Modelos Moleculares , Conformação Molecular , Polímeros/química , Sulfetos/química
11.
Opt Lett ; 39(13): 4009-12, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978794

RESUMO

We describe an approach for producing robust multimaterial chalcogenide glass fibers for mid-wave and long-wave mid-infrared transmission. By combining the traditional rod-in-tube process with multimaterial coextrusion, we prepare a hybrid glass-polymer preform that is drawn continuously into a robust step-index fiber with a built-in, thermally compatible polymer jacket. Using tellurium-based chalcogenides, the fibers have a transparency window covering the 3-12 µm spectral range, making them particularly attractive for delivering quantum cascade laser light and in space applications.

12.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998345

RESUMO

Taking austenitic stainless-steel bellows as the research object, a finite element model for the heat treatment of austenitic stainless-steel bellows was constructed based on ABAQUS CAE 2022. The physical properties of the bellows after the heat treatment were analyzed using experimental and simulated curve processing analysis methods. The changes in residual stress and deformation in relation to the bellows under different cooling times were explored, as well as the distribution of residual stress and deformation at a certain cooling time. The results show that as the cooling time of the heat treatment increases, the residual stress of the bellow decreases significantly, the reduction rate accelerates, and the degree of deformation gradually decreases. When the cooling time of the heat treatment is 900 s, the residual stress of the wave peak in the middle position of the bellow is relatively small, and the residual stress value of the wave valley along the axis direction does not change significantly. The deformation degree of the wave peak and valley axis direction is relatively uniform.

13.
iScience ; 27(3): 109089, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38390495

RESUMO

Basketball, as one of the most popular sports in the world, has millions of followers and massive economic value. Basketball evolves so fast that it requires teams with smarter strategies, better skills, and stronger players. However, the competition strategies and training methods in basketball are still experience-based, lacking precise data to drive for more efficient training and strategies. On the other hand, flexible sensors, as a new class of sensors, have been a hotspot for scientific research and widely applied in various fields. Due to their excellent characteristics of flexibility, wearing comfort, convenience, and response speed, integrating flexible sensors into basketball has the potential to greatly promote all aspects of the sport. This paper aims to bring more fusion between basketball and flexible sensors. In this perspective, we first perform a review of the history of sensing technologies in the basketball sport and discuss mechanisms of flexible sensors applied on basketball players. Then specific scenarios for flexible sensors applied in basketball were elaborated on in detail. Finally, we envision the potential applications of flexible sensors in basketball and present our views on future development directions. We hope this paper can depict how flexible sensing technology is integrated into basketball systems and point out the future development of basketball with the help of flexible sensors.

14.
Adv Mater ; : e2400745, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810961

RESUMO

The development of scalable and passive coatings that can adapt to seasonal temperature changes while maintaining superhydrophobic self-cleaning functions is crucial for their practical applications. However, the incorporation of passive cooling and heating functions with conflicting optical properties in a superhydrophobic coating is still challenging. Herein, an all-in-one coating inspired by the hierarchical structure of a lotus leaf that combines surface wettability, optical structure, and temperature self-adaptation is obtained through a simple one-step phase separation process. This coating exhibits an asymmetrical gradient structure with surface-embedded hydrophobic SiO2 particles and subsurface thermochromic microcapsules within vertically distributed hierarchical porous structures. Moreover, the coating imparts superhydrophobicity, high infrared emission, and thermo-switchable sunlight reflectivity, enabling autonomous transitions between radiative cooling and solar warming. The all-in-one coating prevents contamination and over-cooling caused by traditional radiative cooling materials, opening up new prospects for the large-scale manufacturing of intelligent thermoregulatory coatings.

15.
Sci Robot ; 9(87): eadh2479, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381840

RESUMO

Cerebral aneurysms and brain tumors are leading life-threatening diseases worldwide. By deliberately occluding the target lesion to reduce the blood supply, embolization has been widely used clinically to treat cerebral aneurysms and brain tumors. Conventional embolization is usually performed by threading a catheter through blood vessels to the target lesion, which is often limited by the poor steerability of the catheter in complex neurovascular networks, especially in submillimeter regions. Here, we propose magnetic soft microfiberbots with high steerability, reliable maneuverability, and multimodal shape reconfigurability to perform robotic embolization in submillimeter regions via a remote, untethered, and magnetically controllable manner. Magnetic soft microfiberbots were fabricated by thermal drawing magnetic soft composite into microfibers, followed by magnetizing and molding procedures to endow a helical magnetic polarity. By controlling magnetic fields, magnetic soft microfiberbots exhibit reversible elongated/aggregated shape morphing and helical propulsion in flow conditions, allowing for controllable navigation through complex vasculature and robotic embolization in submillimeter regions. We performed in vitro embolization of aneurysm and tumor in neurovascular phantoms and in vivo embolization of a rabbit femoral artery model under real-time fluoroscopy. These studies demonstrate the potential clinical value of our work, paving the way for a robotic embolization scheme in robotic settings.


Assuntos
Neoplasias Encefálicas , Aneurisma Intracraniano , Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Coelhos , Procedimentos Cirúrgicos Robóticos/métodos , Aneurisma Intracraniano/terapia , Fenômenos Magnéticos
16.
Nat Commun ; 15(1): 2169, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461277

RESUMO

Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field-twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses the dispersion like photons nor carries the band structure as electrons, the real magic angle in electrons or photons is ill-defined for heat diffusion, making it elusive to understand or design any thermal analogue of magic angle. Here, we introduce and experimentally validate the twisted thermotics in a twisted diffusion system by judiciously tailoring thermal coupling, in which twisting an analog thermal magic angle would result in the function switching from cloaking to concentration. Our work provides insights for the tunable heat diffusion control, and opens up an unexpected branch for twistronics -- twisted thermotics, paving the way towards field manipulation in twisted configurations including but not limited to fluids.

17.
Light Sci Appl ; 13(1): 48, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355692

RESUMO

Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human-machine integration.

18.
iScience ; 26(3): 106111, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879817

RESUMO

Chalcogenide glass (ChG) with unique material properties has been widely used in mid-infrared. Traditional ChG microspheres/nanospheres preparation usually uses a high-temperature melting method, in which it is difficult to accurately control the size and the morphology of the nanospheres. Here, we produce nanoscale-uniform (200-500 nm), morphology-tunable, and arrangement-orderly ChG nanospheres from the inverse-opal photonic crystal (IOPC) template by the liquid-phase template (LPT) method. Moreover, we refer to the formation mechanism of nanosphere morphology as the evaporation-driven self-assembly of colloidal dispersion nanodroplets within the immobilized template and find that the concentration of ChG solution and the pore size of IOPC are the key to control the morphology of the nanospheres. The LPT method is also applied to the two-dimensional microstructure/nanostructure. This work provides an efficient and low-cost strategy for the preparation of multisize ChG nanospheres with tunable morphology and is expected to find various applications in mid-infrared, optoelectronic devices.

19.
ACS Appl Mater Interfaces ; 15(12): 16063-16071, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917548

RESUMO

As an important component of wearable and stretchable strain sensors, dual-mode strain sensors can respond to deformation via optical/electrical dual-signal changes, which have important applications in human motion monitoring. However, realizing a fiber-shaped dual-mode strain sensor that can work stably in real life remains a challenge. Here, we design an interactive dual-mode fiber strain sensor with both mechanochromic and mechanoelectrical functions that can be applied to a variety of different environments. The dual-mode fiber is produced by coating a transparent elastic conductive layer onto photonic fiber composed of silica particles and elastic rubber. The sensor has visualized dynamic color change, a large strain range (0-80%), and a high sensitivity (1.90). Compared to other dual-mode strain sensors based on the photonic elastomer, our sensor exhibits a significant advantage in strain range. Most importantly, it can achieve reversible and stable optical/electrical dual-signal outputs in response to strain under various environmental conditions. As a wearable portable device, the dual-mode fiber strain sensor can be used for real-time monitoring of human motion, realizing the direct interaction between users and devices, and is expected to be used in fields such as smart wearable, human-machine interactions, and health monitoring.


Assuntos
Elastômeros , Dispositivos Eletrônicos Vestíveis , Humanos , Elastômeros/química , Movimento (Física) , Condutividade Elétrica , Borracha
20.
Natl Sci Rev ; 10(1): nwac208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684522

RESUMO

Photonic structures at the wavelength scale offer innovative energy solutions for a wide range of applications, from high-efficiency photovoltaics to passive cooling, thus reshaping the global energy landscape. Radiative cooling based on structural and material design presents new opportunities for sustainable carbon neutrality as a zero-energy, ecologically friendly cooling strategy. In this review, in addition to introducing the fundamentals of the basic theory of radiative cooling technology, typical radiative cooling materials alongside their cooling effects over recent years are summarized and the current research status of radiative cooling materials is outlined and discussed. Furthermore, technical challenges and potential advancements for radiative cooling are forecast with an outline of future application scenarios and development trends. In the future, radiative cooling is expected to make a significant contribution to global energy saving and emission reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA