RESUMO
Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997-1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999-2000, 2004-2005, 2010-2011, and 2015 droughts in tropical Africa; and 1997-1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement.
Assuntos
Secas , Floresta Úmida , Mudança Climática , Árvores/fisiologia , Clima TropicalRESUMO
The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drought, except in the wettest part of the central Amazon, where it declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had fully recovered to the predrought level. Using random-forest models, we found that the magnitude of AGB losses during the drought was mainly associated with regionally distinct patterns of soil water deficits and soil clay content. For the AGB recovery, we found strong influences of AGB losses during the drought and of [Formula: see text]. [Formula: see text] is a parameter related to canopy structure and is defined as the ratio of two relative height (RH) metrics of Geoscience Laser Altimeter System (GLAS) waveform data-RH25 (25% energy return height) and RH100 (100% energy return height; i.e., top canopy height). A high [Formula: see text] may reflect forests with a tall understory, thick and closed canopy, and/or without degradation. Such forests with a high [Formula: see text] ([Formula: see text] ≥ 0.3) appear to have a stronger capacity to recover than low-[Formula: see text] ones. Our results highlight the importance of forest structure when predicting the consequences of future drought stress in the tropics.
Assuntos
Biomassa , Secas , El Niño Oscilação Sul , Floresta Úmida , Solo , Clima Tropical , ÁguaRESUMO
Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.
Assuntos
Floresta Úmida , Resiliência Psicológica , Efeitos Antropogênicos , Conservação dos Recursos Naturais/métodos , FlorestasRESUMO
Lakes are widely distributed on the Mongolian Plateau and, as critical water sources, have sustained Mongolian pastures for hundreds of years. However, the plateau has experienced significant lake shrinkage and grassland degradation during the past several decades. To quantify the changes in all of the lakes on the plateau and the associated driving factors, we performed a satellite-based survey using multitemporal Landsat images from the 1970s to 2000s, combined with ground-based censuses. Our results document a rapid loss of lakes on the plateau in the past decades: the number of lakes with a water surface area >1 km(2) decreased from 785 in the late 1980s to 577 in 2010, with a greater rate of decrease (34.0%) in Inner Mongolia of China than in Mongolia (17.6%). This decrease has been particularly pronounced since the late 1990s in Inner Mongolia and the number of lakes >10 km(2) has declined by 30.0%. The statistical analyses suggested that in Mongolia precipitation was the dominant driver for the lake changes, and in Inner Mongolia coal mining was most important in its grassland area and irrigation was the leading factor in its cultivated area. The deterioration of lakes is expected to continue in the following decades not only because of changing climate but also increasing exploitation of underground mineral and groundwater resources on the plateau. To protect grasslands and the indigenous nomads, effective action is urgently required to save these valuable lakes from further deterioration.
Assuntos
Lagos , Mongólia , Imagens de SatélitesRESUMO
Forest canopy height is an important indicator of forest biomass, species diversity, and other ecosystem functions; however, the climatic determinants that underlie its global patterns have not been fully explored. Using satellite LiDAR-derived forest canopy heights and field measurements of the world's giant trees, combined with climate indices, we evaluated the global patterns and determinants of forest canopy height. The mean canopy height was highest in tropical regions, but tall forests (>50 m) occur at various latitudes. Water availability, quantified by the difference between annual precipitation and annual potential evapotranspiration (P-PET), was the best predictor of global forest canopy height, which supports the hydraulic limitation hypothesis. However, in striking contrast with previous studies, the canopy height exhibited a hump-shaped curve along a gradient of P-PET: it initially increased, then peaked at approximately 680 mm of P-PET, and finally declined, which suggests that excessive water supply negatively affects the canopy height. This trend held true across continents and forest types, and it was also validated using forest inventory data from China and the United States. Our findings provide new insights into the climatic controls of the world's giant trees and have important implications for forest management and improvement of forest growth models.
Assuntos
Clima , Florestas , Árvores/crescimento & desenvolvimentoRESUMO
China's extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China's planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China's planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China's planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr-1. The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China's Carbon Neutrality Target for 2060.
RESUMO
China's massive wave of urbanization may be threatened by land subsidence. Using a spaceborne synthetic aperture radar interferometry technique, we provided a systematic assessment of land subsidence in all of China's major cities from 2015 to 2022. Of the examined urban lands, 45% are subsiding faster than 3 millimeters per year, and 16% are subsiding faster than 10 millimeters per year, affecting 29 and 7% of the urban population, respectively. The subsidence appears to be associated with a range of factors such as groundwater withdrawal and the weight of buildings. By 2120, 22 to 26% of China's coastal lands will have a relative elevation lower than sea level, hosting 9 to 11% of the coastal population, because of the combined effect of city subsidence and sea-level rise. Our results underscore the necessity of enhancing protective measures to mitigate potential damages from subsidence.
RESUMO
Freshwater fish represent one-fourth of the world's vertebrates and provide irreplaceable goods and services but are increasingly affected by human activities. A new index, Cumulative Change in Biodiversity Facets, revealed marked changes in biodiversity in >50% of the world's rivers covering >40% of the world's continental surface and >37% of the world's river length, whereas <14% of the world's surface and river length remain least impacted. Present-day rivers are more similar to each other and have more fish species with more diverse morphologies and longer evolutionary legacies. In temperate rivers, where the impact has been greatest, biodiversity changes were primarily due to river fragmentation and introduction of non-native species.
Assuntos
Biodiversidade , Peixes , Atividades Humanas , Rios , Animais , Clima , Peixes/classificação , Humanos , FilogeniaRESUMO
Lakes have played a critical role in providing water and ecosystem services for people and other organisms in China for millennia. However, accelerating climate change and economic boom have resulted in unprecedented changes in these valuable lakes. Using Landsat images covering the entity of the country, we explored the changes in China's lakes and the associated driving forces over the last 30 years (i.e. mid-1980s to 2015). We discovered that China's lakes have changed with divergent regional trends: in the sparsely populated Tibetan Plateau, lakes are abundant and the lake area has increased dramatically from 38 596 to 46 831 km2 (i.e. increased by 8235 km2, or 21.3%), whereas, in the densely populated northern and eastern regions, lakes are relatively scarce and the lake area has decreased from 36 659 to 33 657 km2 (i.e. decreased by 3002 km2, or 8.2%). In particular, severe lake decreases occurred in the Mongolia-Xinjiang Plateau and the Eastern Plain (-2151 km2). Statistical analyses indicated that climate was the most important factor controlling lake changes in the Tibetan Plateau, the Yun-Gui Plateau and the Northeast Plain. However, the strength of climatic control on lake changes was low in the Eastern Plain and the Mongolia-Xinjiang Plateau, where human activities, e.g. impoldering, irrigation and mining, have caused serious impacts on lakes. Further lake changes will exacerbate regional imbalances between lake resources and population distribution, and thus may increase the risk of water-resource crises in China.
RESUMO
The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.
Assuntos
Aves/fisiologia , Ecossistema , Modelos Biológicos , Animais , Biomassa , Bases de Dados como Assunto , InternacionalidadeRESUMO
Forests play an important role in global carbon cycles. However, the lack of available information on carbon stocks in dead organic matter, including woody debris and litter, reduces the reliability of assessing the carbon cycles in entire forest ecosystems. Here we estimate that the national DOM carbon stock in the period of 2004-2008 is 925 ± 54 Tg, with an average density of 5.95 ± 0.35 Mg C ha-1. Over the past two decades from periods of 1984-1988 to 2004-2008, the national dead organic matter carbon stock has increased by 6.7 ± 2.2 Tg carbon per year, primarily due to increasing forest area. Temperature and precipitation increase the carbon density of woody debris, but decrease that of litter. Additionally, the woody debris increases significantly with above ground biomass and forest age. Our results can improve estimates of the carbon budget in China's forests and for better understanding of effects of climate and stand characteristics on dead organic matter distribution.Reliable estimates of the total forest carbon (C) pool are lacking due to insufficient information on dead organic matter (DOM). Here, the authors estimate that the current DOM C stock in China is 925 ± 54 Tg and that it grew by 6.7 ± 2.2 Tg C/yr over the past two decades primarily due to increasing forest area.