Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(32): 13468-13472, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32315516

RESUMO

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

2.
Sensors (Basel) ; 18(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424566

RESUMO

We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.

3.
Materials (Basel) ; 12(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375019

RESUMO

This study reports on the optoelectronic properties of porphyrin-based metal-organic framework (MOF) thin films fabricated by a facile liquid-phase epitaxy approach. This approach affords the growth of MOF thin films that are free of morphological imperfections, more suitable for optoelectronic applications. Chemical modifications such as the porphyrin ligand metallation have been found to preserve the morphology of the grown films making this approach particularly suitable for molecular alteration of MOF thin film optoelectronic properties without compromising its mesoscale morphology significantly. Particularly, the metallation of the ligand was found to be effective to tune the MOF bandgap. These porphyrin-based MOF thin films were shown to function effectively as donor layers in solar cells based on a Fullerene-C60 acceptor. The ability to fabricate MOF solar cells free of a liquid-phase acceptor greatly simplifies device fabrication and enables pairing of MOFs as light absorbers with a wide range of acceptors including non-fullerene acceptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA