Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Magn Reson Med ; 89(6): 2402-2418, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695213

RESUMO

PURPOSE: QSM outside the brain has recently gained interest, particularly in the abdominal region. However, the absence of reliable ground truths makes difficult to assess reconstruction algorithms, whose quality is already compromised by additional signal contributions from fat, gases, and different kinds of motion. This work presents a realistic in silico phantom for the development, evaluation and comparison of abdominal QSM reconstruction algorithms. METHODS: Synthetic susceptibility and R 2 * $$ {R}_2^{\ast } $$ maps were generated by segmenting and postprocessing the abdominal 3T MRI data from a healthy volunteer. Susceptibility and R 2 * $$ {R}_2^{\ast } $$ values in different tissues/organs were assigned according to literature and experimental values and were also provided with realistic textures. The signal was simulated using as input the synthetic QSM and R 2 * $$ {R}_2^{\ast } $$ maps and fat contributions. Three susceptibility scenarios and two acquisition protocols were simulated to compare different reconstruction algorithms. RESULTS: QSM reconstructions show that the phantom allows to identify the main strengths and limitations of the acquisition approaches and reconstruction algorithms, such as in-phase acquisitions, water-fat separation methods, and QSM dipole inversion algorithms. CONCLUSION: The phantom showed its potential as a ground truth to evaluate and compare reconstruction pipelines and algorithms. The publicly available source code, designed in a modular framework, allows users to easily modify the susceptibility, R 2 * $$ {R}_2^{\ast } $$ and TEs, and thus creates different abdominal scenarios.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Abdome/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos
2.
Eur Radiol ; 33(9): 6557-6568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014405

RESUMO

OBJECTIVE: To accurately estimate liver PDFF from chemical shift-encoded (CSE) MRI using a deep learning (DL)-based Multi-Decoder Water-Fat separation Network (MDWF-Net), that operates over complex-valued CSE-MR images with only 3 echoes. METHODS: The proposed MDWF-Net and a U-Net model were independently trained using the first 3 echoes of MRI data from 134 subjects, acquired with conventional 6-echoes abdomen protocol at 1.5 T. Resulting models were then evaluated using unseen CSE-MR images obtained from 14 subjects that were acquired with a 3-echoes CSE-MR pulse sequence with a shorter duration compared to the standard protocol. Resulting PDFF maps were qualitatively assessed by two radiologists, and quantitatively assessed at two corresponding liver ROIs, using Bland Altman and regression analysis for mean values, and ANOVA testing for standard deviation (STD) (significance level: .05). A 6-echo graph cut was considered ground truth. RESULTS: Assessment of radiologists demonstrated that, unlike U-Net, MDWF-Net had a similar quality to the ground truth, despite it considered half of the information. Regarding PDFF mean values at ROIs, MDWF-Net showed a better agreement with ground truth (regression slope = 0.94, R2 = 0.97) than U-Net (regression slope = 0.86, R2 = 0.93). Moreover, ANOVA post hoc analysis of STDs showed a statistical difference between graph cuts and U-Net (p < .05), unlike MDWF-Net (p = .53). CONCLUSION: MDWF-Net showed a liver PDFF accuracy comparable to the reference graph cut method, using only 3 echoes and thus allowing a reduction in the acquisition times. CLINICAL RELEVANCE STATEMENT: We have prospectively validated that the use of a multi-decoder convolutional neural network to estimate liver proton density fat fraction allows a significant reduction in MR scan time by reducing the number of echoes required by 50%. KEY POINTS: • Novel water-fat separation neural network allows for liver PDFF estimation by using multi-echo MR images with a reduced number of echoes. • Prospective single-center validation demonstrated that echo reduction leads to a significant shortening of the scan time, compared to standard 6-echo acquisition. • Qualitative and quantitative performance of the proposed method showed no significant differences in PDFF estimation with respect to the reference technique.


Assuntos
Fígado , Água , Humanos , Estudos Prospectivos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Abdome , Redes Neurais de Computação , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 88(2): 962-972, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35435267

RESUMO

PURPOSE: Susceptibility maps are usually derived from local magnetic field estimations by minimizing a functional composed of a data consistency term and a regularization term. The data-consistency term measures the difference between the desired solution and the measured data using typically the L2-norm. It has been proposed to replace this L2-norm with the L1-norm, due to its robustness to outliers and reduction of streaking artifacts arising from highly noisy or strongly perturbed regions. However, in regions with high SNR, the L1-norm yields a suboptimal denoising performance. In this work, we present a hybrid data fidelity approach that uses the L1-norm and subsequently the L2-norm to exploit the strengths of both norms. METHODS: We developed a hybrid data fidelity term approach for QSM (HD-QSM) based on linear susceptibility inversion methods, with total variation regularization. Each functional is solved with ADMM. The HD-QSM approach is a two-stage method that first finds a fast solution of the L1-norm functional and then uses this solution to initialize the L2-norm functional. In both norms we included spatially variable weights that improve the quality of the reconstructions. RESULTS: The HD-QSM approach produced good quantitative reconstructions in terms of structural definition, noise reduction, and avoiding streaking artifacts comparable with nonlinear methods, but with higher computational efficiency. Reconstructions performed with this method achieved first place at the lowest RMS error category in stage 1 of the 2019 QSM Reconstruction Challenge. CONCLUSIONS: The proposed method allows robust and accurate QSM reconstructions, obtaining superior performance to state-of-the-art methods.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
4.
Magn Reson Med ; 87(1): 457-473, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350634

RESUMO

PURPOSE: The presence of dipole-inconsistent data due to substantial noise or artifacts causes streaking artifacts in quantitative susceptibility mapping (QSM) reconstructions. Often used Bayesian approaches rely on regularizers, which in turn yield reduced sharpness. To overcome this problem, we present a novel L1-norm data fidelity approach that is robust with respect to outliers, and therefore prevents streaking artifacts. METHODS: QSM functionals are solved with linear and nonlinear L1-norm data fidelity terms using functional augmentation, and are compared with equivalent L2-norm methods. Algorithms were tested on synthetic data, with phase inconsistencies added to mimic lesions, QSM Challenge 2.0 data, and in vivo brain images with hemorrhages. RESULTS: The nonlinear L1-norm-based approach achieved the best overall error metric scores and better streaking artifact suppression. Notably, L1-norm methods could reconstruct QSM images without using a brain mask, with similar regularization weights for different data fidelity weighting or masking setups. CONCLUSION: The proposed L1-approach provides a robust method to prevent streaking artifacts generated by dipole-inconsistent data, renders brain mask calculation unessential, and opens novel challenging clinical applications such asassessing brain hemorrhages and cortical layers.


Assuntos
Artefatos , Mapeamento Encefálico , Algoritmos , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
5.
Magn Reson Med ; 85(1): 480-494, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738103

RESUMO

PURPOSE: Quantitative Susceptibility Mapping (QSM) is usually performed by minimizing a functional with data fidelity and regularization terms. A weighting parameter controls the balance between these terms. There is a need for techniques to find the proper balance that avoids artifact propagation and loss of details. Finding the point of maximum curvature in the L-curve is a popular choice, although it is slow, often unreliable when using variational penalties, and has a tendency to yield overregularized results. METHODS: We propose 2 alternative approaches to control the balance between the data fidelity and regularization terms: 1) searching for an inflection point in the log-log domain of the L-curve, and 2) comparing frequency components of QSM reconstructions. We compare these methods against the conventional L-curve and U-curve approaches. RESULTS: Our methods achieve predicted parameters that are better correlated with RMS error, high-frequency error norm, and structural similarity metric-based parameter optimizations than those obtained with traditional methods. The inflection point yields less overregularization and lower errors than traditional alternatives. The frequency analysis yields more visually appealing results, although with larger RMS error. CONCLUSION: Our methods provide a robust parameter optimization framework for variational penalties in QSM reconstruction. The L-curve-based zero-curvature search produced almost optimal results for typical QSM acquisition settings. The frequency analysis method may use a 1.5 to 2.0 correction factor to apply it as a stand-alone method for a wider range of signal-to-noise-ratio settings. This approach may also benefit from fast search algorithms such as the binary search to speed up the process.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído
6.
Magn Reson Med ; 84(4): 2219-2230, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32270542

RESUMO

PURPOSE: To improve the quality of mean apparent propagator (MAP) reconstruction from a limited number of q-space samples. METHODS: We implement an ℓ1 -regularised MAP (MAPL1) to consider higher order basis functions and to improve the fit without increasing the number of q-space samples. We compare MAPL1 with the least-squares optimization subject to non-negativity (MAP), and the Laplacian-regularized MAP (MAPL). We use simulations of crossing fibers and compute the normalized mean squared error (NMSE) and the Pearson's correlation coefficient to evaluate the reconstruction quality in q-space. We also compare coefficient-based diffusion indices in the simulations and in in vivo data. RESULTS: Results indicate that MAPL1 improves NMSE in 1 to 3% when compared to MAP or MAPL in a high undersampling regime. Additionally, MAPL1 produces more reproducible and accurate results for all sampling rates when there are enough basis functions to meet the sparsity criterion for the regularizer. These improved reconstructions also produce better coefficient-based diffusion indices for in vivo data. CONCLUSIONS: Adding an ℓ1 regularizer to MAP allows the use of more basis functions and a better fit without increasing the number of q-space samples. The impact of our research is that a complete diffusion spectrum can be reconstructed from an acquisition time very similar to a diffusion tensor imaging protocol.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Algoritmos , Encéfalo/diagnóstico por imagem , Aumento da Imagem
7.
Magn Reson Med ; 84(3): 1624-1637, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32086836

RESUMO

PURPOSE: The 4th International Workshop on MRI Phase Contrast and QSM (2016, Graz, Austria) hosted the first QSM Challenge. A single-orientation gradient recalled echo acquisition was provided, along with COSMOS and the χ33 STI component as ground truths. The submitted solutions differed more than expected depending on the error metric used for optimization and were generally over-regularized. This raised (unanswered) questions about the ground truths and the metrics utilized. METHODS: We investigated the influence of background field remnants by applying additional filters. We also estimated the anisotropic contributions from the STI tensor to the apparent susceptibility to amend the χ33 ground truth and to investigate the impact on the reconstructions. Lastly, we used forward simulations from the COSMOS reconstruction to investigate the impact noise had on the metric scores. RESULTS: Reconstructions compared against the amended STI ground truth returned lower errors. We show that the background field remnants had a minor impact in the errors. In the absence of inconsistencies, all metrics converged to the same regularization weights, whereas structural similarity index metric was more insensitive to such inconsistencies. CONCLUSION: There was a mismatch between the provided data and the ground truths due to the presence of unaccounted anisotropic susceptibility contributions and noise. Given the lack of reliable ground truths when using in vivo acquisitions, simulations are suggested for future QSM Challenges.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 81(2): 1399-1411, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30265767

RESUMO

PURPOSE: Background-field removal is a crucial preprocessing step for quantitative susceptibility mapping (QSM). Remnants from this step often contaminate the estimated local field, which in turn leads to erroneous tissue-susceptibility reconstructions. The present work aimed to mitigate this undesirable behavior with the development of a new approach that simultaneously decouples background contributions and local susceptibility sources on QSM inversion. METHODS: Input phase data for QSM can be seen as a composite scalar field of local effects and residual background components. We developed a new weak-harmonic regularizer to constrain the latter and to separate the 2 components. The resulting optimization problem was solved with the alternating directions of multipliers method framework to achieve fast convergence. In addition, for convenience, a new alternating directions of multipliers method-based preconditioned nonlinear projection onto dipole fields solver was developed to enable initializations with wrapped-phase distributions. Weak-harmonic QSM, with and without nonlinear projection onto dipole fields preconditioning, was compared with the original (alternating directions of multipliers method-based) total variation QSM algorithm in phantom and in vivo experiments. RESULTS: Weak-harmonic QSM returned improved reconstructions regardless of the method used for background-field removal, although the proposed nonlinear projection onto dipole fields method often obtained better results. Streaking and shadowing artifacts were substantially suppressed, and residual background components were effectively removed. CONCLUSION: Weak-harmonic QSM with field preconditioning is a robust dipole inversion technique and has the potential to be extended as a single-step formulation for initialization with uncombined multi-echo data.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Mapeamento Encefálico , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
Neuroimage ; 183: 7-24, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30075277

RESUMO

Quantitative Susceptibility Mapping (QSM), best known as a surrogate for tissue iron content, is becoming a highly relevant MRI contrast for monitoring cellular and vascular status in aging, addiction, traumatic brain injury and, in general, a wide range of neurological disorders. In this study we present a new Bayesian QSM algorithm, named Multi-Scale Dipole Inversion (MSDI), which builds on the nonlinear Morphology-Enabled Dipole Inversion (nMEDI) framework, incorporating three additional features: (i) improved implementation of Laplace's equation to reduce the influence of background fields through variable harmonic filtering and subsequent deconvolution, (ii) improved error control through dynamic phase-reliability compensation across spatial scales, and (iii) scalewise use of the morphological prior. More generally, this new pre-conditioned QSM formalism aims to reduce the impact of dipole-incompatible fields and measurement errors such as flow effects, poor signal-to-noise ratio or other data inconsistencies that can lead to streaking and shadowing artefacts. In terms of performance, MSDI is the first algorithm to rank in the top-10 for all metrics evaluated in the 2016 QSM Reconstruction Challenge. It also demonstrated lower variance than nMEDI and more stable behaviour in scan-rescan reproducibility experiments for different MRI acquisitions at 3 and 7 Tesla. In the present work, we also explored new forms of susceptibility MRI contrast making explicit use of the differential information across spatial scales. Specifically, we show MSDI-derived examples of: (i) enhanced anatomical detail with susceptibility inversions from short-range dipole fields (hereby referred to as High-Pass Susceptibility Mapping or HPSM), (ii) high specificity to venous-blood susceptibilities for highly regularised HPSM (making a case for MSDI-based Venography or VenoMSDI), (iii) improved tissue specificity (and possibly statistical conditioning) for Macroscopic-Vessel Suppressed Susceptibility Mapping (MVSSM), and (iv) high spatial specificity and definition for HPSM-based Susceptibility-Weighted Imaging (HPSM-SWI) and related intensity projections.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Ferro , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Flebografia/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Flebografia/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Magn Reson Med ; 80(2): 814-821, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29322560

RESUMO

PURPOSE: Quantitative susceptibility mapping can be performed through the minimization of a function consisting of data fidelity and regularization terms. For data consistency, a Gaussian-phase noise distribution is often assumed, which breaks down when the signal-to-noise ratio is low. A previously proposed alternative is to use a nonlinear data fidelity term, which reduces streaking artifacts, mitigates noise amplification, and results in more accurate susceptibility estimates. We hereby present a novel algorithm that solves the nonlinear functional while achieving computation speeds comparable to those for a linear formulation. METHODS: We developed a nonlinear quantitative susceptibility mapping algorithm (fast nonlinear susceptibility inversion) based on the variable splitting and alternating direction method of multipliers, in which the problem is split into simpler subproblems with closed-form solutions and a decoupled nonlinear inversion hereby solved with a Newton-Raphson iterative procedure. Fast nonlinear susceptibility inversion performance was assessed using numerical phantom and in vivo experiments, and was compared against the nonlinear morphology-enabled dipole inversion method. RESULTS: Fast nonlinear susceptibility inversion achieves similar accuracy to nonlinear morphology-enabled dipole inversion but with significantly improved computational efficiency. CONCLUSION: The proposed method enables accurate reconstructions in a fraction of the time required by state-of-the-art quantitative susceptibility mapping methods. Magn Reson Med 80:814-821, 2018. © 2018 International Society for Magnetic Resonance in Medicine.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas
11.
Magn Reson Med ; 79(1): 541-553, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370386

RESUMO

PURPOSE: We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. METHODS: By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). RESULTS: We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. CONCLUSIONS: We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med 79:541-553, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Adulto , Algoritmos , Aorta/diagnóstico por imagem , Simulação por Computador , Feminino , Voluntários Saudáveis , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Software , Viscosidade , Adulto Jovem
12.
Magn Reson Med ; 79(4): 1882-1892, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28714282

RESUMO

PURPOSE: To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. METHODS: We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. RESULTS: When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm3 and 20 ms, respectively. CONCLUSIONS: Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Aorta Torácica/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Diástole , Endotélio Vascular/diagnóstico por imagem , Hemodinâmica , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia de Contraste de Fase , Imagens de Fantasmas , Reprodutibilidade dos Testes , Resistência ao Cisalhamento , Estresse Mecânico , Volume Sistólico , Sístole , Fatores de Tempo
13.
Hum Brain Mapp ; 37(9): 3153-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27272616

RESUMO

The learning process involved in achieving brain self-regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real-time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up-regulate the blood-oxygen-level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self-regulation from day-1 to day-2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153-3171, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/fisiologia , Imagens, Psicoterapia/métodos , Aprendizagem/fisiologia , Neurorretroalimentação/métodos , Recompensa , Adolescente , Adulto , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
14.
Magn Reson Med ; 76(5): 1400-1409, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26588040

RESUMO

PURPOSE: MRI can produce quantitative liver fat fraction (FF) maps noninvasively, which can help to improve diagnoses of fatty liver diseases. However, most sequences acquire several two-dimensional (2D) slices during one or more breath-holds, which may be difficult for patients with limited breath-holding capacity. A whole-liver 3D FF map could also be obtained in a single acquisition by applying a reliable breathing-motion correction method. Several correction techniques are available for 3D imaging, but they use external devices, interrupt acquisition, or jeopardize the spatial resolution. To overcome these issues, a proof-of-concept study introducing a self-navigated 3D three-point Dixon sequence is presented here. METHODS: A respiratory self-gating strategy acquiring a center k-space profile was integrated into a three-point Dixon sequence. We obtained 3D FF maps from a water-fat emulsions phantom and fifteen volunteers. This sequence was compared with multi-2D breath-hold and 3D free-breathing approaches. RESULTS: Our 3D three-point Dixon self-navigated sequence could correct for respiratory-motion artifacts and provided more precise FF measurements than breath-hold multi-2D and 3D free-breathing techniques. CONCLUSION: Our 3D respiratory self-gating fat quantification sequence could correct for respiratory motion artifacts and yield more-precise FF measurements. Magn Reson Med 76:1400-1409, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Assuntos
Tecido Adiposo/fisiologia , Adiposidade/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Fígado/fisiologia , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Processamento de Sinais Assistido por Computador , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/diagnóstico por imagem , Adulto , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Fígado/anatomia & histologia , Fígado/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
J Magn Reson Imaging ; 44(3): 683-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26969867

RESUMO

PURPOSE: To design and characterize a magnetic resonance imaging (MRI)-compatible aortic phantom simulating normal and aortic coarctation (AoCo) conditions and to compare its hemodynamics with healthy volunteers and AoCo patients. MATERIALS AND METHODS: The phantom is composed of an MRI-compatible pump, control unit, aortic model, compliance chamber, nonreturn, and shutoff valves. The phantom without and with AoCo (13, 11, and 9 mm) was studied using 2D and 3D phase-contrast data and with a catheterization unit to measure pressures. The phantom data were compared with the mean values of 10 healthy volunteers and two AoCo patients. RESULTS: Hemodynamic parameters in the normal phantom and healthy volunteers were: heart rate: 68/61 bpm, cardiac output: 3.5/4.5 L/min, peak flow and peak velocity (Vpeak) in the ascending aorta (AAo): 270/357 mL/s (significantly, P < 0.05) and 97/107 cm/s (not significantly, P = 0.16), and pressure in the AAo of the normal phantom of 131/58 mmHg. Hemodynamic parameters in the 13, 11, and 9 mm coarctation phantoms and Patients 1 and 2 were: heart rate: 75/75/75/97/78 bpm, cardiac output: 3.3/3.0/2.9/4.0/5.8 L/min, peak flow in the AAo: 245/265/215/244/376 mL/s, Vpeak in the AAo: 96/95/81/196/187 cm/s, Vpeak after the AoCo: 123/187/282/247/165 cm/s, pressure in the AAo: 124/56, 127/51, 133/50, 120/51 and 87/39 mmHg, and a trans-coarctation systolic pressure gradient: 7, 10, 30, 20, and 11 mmHg. CONCLUSION: We propose and characterize a normal and an AoCo phantom, whose hemodynamics, including velocity, flow, and pressure data are within the range of healthy volunteers and patients with AoCo. J. Magn. Reson. Imaging 2016;44:683-697.


Assuntos
Aorta/diagnóstico por imagem , Aorta/fisiopatologia , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/fisiopatologia , Técnicas de Imagem Cardíaca/instrumentação , Angiografia por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Velocidade do Fluxo Sanguíneo , Cateterismo Cardíaco/métodos , Técnicas de Imagem Cardíaca/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Angiografia por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Ann Hepatol ; 15(5): 721-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493111

RESUMO

UNLABELLED:  Background. Patients with type 2 diabetes mellitus (T2DM) are at risk for developing end-stage liver disease due to nonalcoholic steatohepatitis (NASH), the aggressive form of non-alcoholic fatty liver disease (NAFLD). Data on prevalence of advanced fibrosis among T2DM patients is scarce. AIM: To evaluate prevalence of steatosis, advanced fibrosis and cirrhosis using non-invasive methods in T2DM patients. MATERIAL AND METHODS: 145 consecutive T2DM patients (> 55 years-old) were prospectively recruited. Presence of cirrhosis and advanced fibrosis was evaluated by magnetic resonance imaging (MRI) and NAFLD fibrosis score (NFS) respectively. Exclusion criteria included significant alcohol consumption, markers of viral hepatitis infection or other liver diseases. Results are expressed in percentage or median (interquartile range). RESULTS: 52.6% of patients were women, the median age was 60 years old (57-64), mean BMI was 29.6 ± 4.7 kg/m2 and diabetes duration was 7.6 ± 6.9 years. A high prevalence of liver steatosis (63.9%), advanced fibrosis assessed by NFS (12.8%) and evidence of liver cirrhosis in MRI (6.0%) was observed. In a multivariate analysis GGT > 82 IU/L (P = 0.004) and no alcohol intake (P = 0.032) were independently associated to advanced fibrosis. CONCLUSION: A high frequency of undiagnosed advanced fibrosis and cirrhosis was observed in non-selected T2DM patients. Screening of these conditions may be warranted in this patient population.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Cirrose Hepática/epidemiologia , Biomarcadores/sangue , Distribuição de Qui-Quadrado , Chile/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Progressão da Doença , Feminino , Humanos , Cirrose Hepática/sangue , Cirrose Hepática/diagnóstico , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Prevalência , Estudos Prospectivos , Fatores de Risco
17.
J Magn Reson Imaging ; 39(4): 1027-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24136653

RESUMO

PURPOSE: To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . MATERIALS AND METHODS: To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. RESULTS: The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. CONCLUSION: A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Músculo Esquelético/anatomia & histologia , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Perna (Membro) , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
BMC Bioinformatics ; 14: 162, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23679062

RESUMO

BACKGROUND: Calcium (Ca2+) propagates within tissues serving as an important information carrier. In particular, cilia beat frequency in oviduct cells is partially regulated by Ca2+ changes. Thus, measuring the calcium density and characterizing the traveling wave plays a key role in understanding biological phenomena. However, current methods to measure propagation velocities and other wave characteristics involve several manual or time-consuming procedures. This limits the amount of information that can be extracted, and the statistical quality of the analysis. RESULTS: Our work provides a framework based on image processing procedures that enables a fast, automatic and robust characterization of data from two-filter fluorescence Ca2+ experiments. We calculate the mean velocity of the wave-front, and use theoretical models to extract meaningful parameters like wave amplitude, decay rate and time of excitation. CONCLUSIONS: Measurements done by different operators showed a high degree of reproducibility. This framework is also extended to a single filter fluorescence experiments, allowing higher sampling rates, and thus an increased accuracy in velocity measurements.


Assuntos
Sinalização do Cálcio , Cálcio/análise , Processamento de Imagem Assistida por Computador/métodos , Animais , Calibragem , Células Cultivadas , Processamento de Imagem Assistida por Computador/normas , Microscopia de Fluorescência , Ratos , Reprodutibilidade dos Testes
19.
Radiology ; 267(1): 67-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23297331

RESUMO

PURPOSE: To validate the use of particle traces derived from four-dimensional (4D) flow magnetic resonance (MR) imaging to quantify in vivo the caval flow contribution to the pulmonary arteries (PAs) in patients who had been treated with the Fontan procedure. MATERIALS AND METHODS: The institutional review boards approved this study, and informed consent was obtained. Twelve healthy volunteers and 10 patients with Fontan circulation were evaluated. The particle trace method consists of creating a region of interest (ROI) on a blood vessel, which is used to emit particles with a temporal resolution of approximately 40 msec. The flow distribution, as a percentage, is then estimated by counting the particles arriving to different ROIs. To validate this method, two independent observers used particle traces to calculate the flow contribution of the PA to its branches in volunteers and compared it with the contribution estimated by measuring net forward flow volume (reference method). After the method was validated, caval flow contributions were quantified in patients. Statistical analysis was performed with nonparametric tests and Bland-Altman plots. P < .05 was considered to indicate a significant difference. RESULTS: Estimation of flow contributions by using particle traces was equivalent to estimation by using the reference method. Mean flow contribution of the PA to the right PA in volunteers was 54% ± 3 (standard deviation) with the reference method versus 54% ± 3 with the particle trace method for observer 1 (P = .4) and 54% ± 4 versus 54% ± 4 for observer 2 (P = .6). In patients with Fontan circulation, 87% ± 13 of the superior vena cava blood flowed to the right PA (range, 63%-100%), whereas 55% ± 19 of the inferior vena cava blood flowed to the left PA (range, 22%-82%). CONCLUSION: Particle traces derived from 4D flow MR imaging enable in vivo quantification of the caval flow distribution to the PAs in patients with Fontan circulation. This method might allow the identification of patients at risk of developing complications secondary to uneven flow distribution. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120778/-/DC1.


Assuntos
Técnica de Fontan , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Complicações Pós-Operatórias/diagnóstico , Artéria Pulmonar/fisiologia , Veias Cavas/fisiologia , Adolescente , Análise de Variância , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Hemodinâmica , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Lactente , Masculino , Complicações Pós-Operatórias/fisiopatologia , Software , Estatísticas não Paramétricas
20.
Pediatr Cardiol ; 34(2): 447-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22447380

RESUMO

We report hemodynamic findings in two patients with pulmonary atresia and intact ventricular septum (PAIVS) after "one-and-a-half ventricle repair" and placement of a bidirectional Glenn shunt using four-dimensional (4D) flow magnetic resonance imaging. Quantification of flow and analysis of flow patterns revealed the hemodynamic "battle" between the right ventricle (RV) and the Glenn shunt. Moreover, with a novel approach we calculated during Glenn anastomosis the flow distribution from the superior vena cava (SVC) to the pulmonary arteries. Our results showed a highly asymmetric flow distribution, with most of the flow from the SVC toward the RV and not to the lungs. The evidence provided by 4D flow demonstrates poor efficiency of this system and suggests that both patients might benefit from adding an artificial pulmonary valve to avoid right heart failure.


Assuntos
Ventrículos do Coração/cirurgia , Hemodinâmica , Processamento de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética/métodos , Artéria Pulmonar/cirurgia , Atresia Pulmonar/cirurgia , Veia Cava Superior/cirurgia , Adolescente , Derivação Arteriovenosa Cirúrgica/métodos , Feminino , Ventrículos do Coração/anormalidades , Humanos , Atresia Pulmonar/diagnóstico , Atresia Pulmonar/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA