Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(4): 1249-1259, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36799916

RESUMO

Glutamate carboxypeptidase II (GCPII) is a metalloprotease implicated in neurological diseases and prostate oncology. While several classes of potent GCPII-specific inhibitors exist, the development of novel active scaffolds with different pharmacological profiles remains a challenge. Virtual screening followed by in vitro testing is an effective means for the discovery of novel active compounds. Structure- and ligand-based pharmacophore models were created based on a dataset of known GCPII-selective ligands. These models were used in a virtual screening of the SPECS compound library (∼209.000 compounds). Fifty top-scoring virtual hits were further experimentally tested for their ability to inhibit GCPII enzymatic activity in vitro. Six hits were found to have moderate to high inhibitory potency with the best virtual hit, a modified xanthene, inhibiting GCPII with an IC50 value of 353 ± 24 nM. The identification of this novel inhibitory scaffold illustrates the applicability of pharmacophore-based modeling for the discovery of GCPII-specific inhibitors.


Assuntos
Glutamato Carboxipeptidase II , Masculino , Humanos , Ligantes
2.
J Chem Inf Model ; 63(20): 6396-6411, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37774242

RESUMO

Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of ß-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 µM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Estudos Prospectivos , Colchicina/farmacologia , Colchicina/química , Colchicina/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
3.
Bioorg Chem ; 139: 106685, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418786

RESUMO

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase , Inibidores de Lipoxigenase , Humanos , Inibidores de Lipoxigenase/farmacologia , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Solubilidade , Leucócitos Mononucleares/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores Enzimáticos/farmacologia , Anti-Inflamatórios/farmacologia , Piridinas/farmacologia , Tromboxanos , Lipídeos
4.
Arch Pharm (Weinheim) ; 356(5): e2200549, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36772878

RESUMO

Selective cyclooxygenase (COX)-1 inhibitors can be employed as potential cardioprotective drugs. Moreover, COX-1 plays a key role in inflammatory processes and its activity is associated with some types of cancer. In this work, we designed and synthesized a set of compounds that structurally mimic the selective COX-1 inhibitors, SC-560 and mofezolac, the central cores of which were replaced either with triazole or benzene rings. The advantage of this approach is a relatively simple synthesis in comparison with the syntheses of parent compounds. The newly synthesized compounds exhibited remarkable activity and selectivity toward COX-1 in the enzymatic in vitro assay. The most potent compound, 10a (IC50 = 3 nM for COX-1 and 850 nM for COX-2), was as active as SC-560 (IC50  = 2.4 nM for COX-1 and 470 nM for COX-2) toward COX-1 and it was even more selective. The in vitro COX-1 enzymatic activity was further confirmed in the cell-based whole-blood antiplatelet assay, where three out of four selected compounds (10a,c,d, and 3b) exerted outstanding IC50 values in the nanomolar range (9-252 nM). Moreover, docking simulations were performed to reveal key interactions within the COX-1 binding pocket. Furthermore, the toxicity of the selected compounds was tested using the normal human kidney HK-2 cell line.


Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Humanos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular , Anti-Inflamatórios não Esteroides/farmacologia
5.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124840

RESUMO

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Assuntos
Benzimidazóis , Epóxido Hidrolases , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Relação Estrutura-Atividade
6.
Molecules ; 27(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889317

RESUMO

Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.


Assuntos
Dopamina , Receptores de Dopamina D2 , Simulação por Computador , Ligantes , Estudos Prospectivos , Receptores de Dopamina D2/metabolismo
7.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576918

RESUMO

Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by µ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, µ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20-23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24-27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid µ-, δ- and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed µ-affinity in the nanomolar range with a negligible affinity towards δ- and κ-receptors and high µ-receptor selectivity. The synthesized compounds showed µ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs.


Assuntos
Receptores Opioides , Analgésicos , Modelos Moleculares
8.
Bioorg Chem ; 102: 104072, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32693307

RESUMO

A small library of 3-thia-7,9-diazabicyclo[3.3.1]nonanes was synthesized and their opioid receptors affinity and selectivity evaluated. Among these novel sulfur-bridged compounds, the (E) 9-[3'-(3-chlorophenyl)-but-2'-en-1'-yl]-7-propionyl-3-thia-7,9-diazabicyclo[3.3.1]nonane 2i emerged as the derivative with the highest µ receptor affinity (Ki = 85 nM) and selectivity (Ki µ/δ = 58.8, Ki µ/κ > 117.6). The antinociceptive activity of 2i was also evaluated in acute thermal pain. Docking studies disclosed the specific pattern of interactions of these derivatives.


Assuntos
Alcanos/síntese química , Simulação de Acoplamento Molecular/métodos , Enxofre/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993084

RESUMO

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17ß-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.


Assuntos
Produtos Biológicos/química , Simulação por Computador , Descoberta de Drogas , Inibidores Enzimáticos/química , Oxirredutases , Avaliação Pré-Clínica de Medicamentos , Humanos , Oxirredutases/antagonistas & inibidores , Oxirredutases/química
10.
J Mol Cell Cardiol ; 126: 105-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472251

RESUMO

Physiologically, following myocardial infarction (MI), retinoid levels elevate locally in the infarcted area. Whereas therapeutic systemic application of retinoids was shown to reduce the progression of ventricular dilatation and the onset of heart failure, the role of acute physiologically increased retinoids in the infarction zone is unknown to date. To reveal the role of local retinoids in the MI zone is the central aim of this study. Using human cell culture and co-culture models for hypoxia as well as various assays systems, lentivirus-based transgene expression, in silico molecular docking studies, and an MI model in rats, we analysed the impact of the retinoid all-trans retinoic acid (ATRA) on cell signalling, cell viability, tissue survival, heart function, and MI-induced death in rats. Based on our results, ATRA-mediated signalling does aggravate the MI phenotype (e.g. 2.5-fold increased mortality compared to control), whereas 5'-methoxyleoligin (5ML), a new agent which interferes with ATRA-signalling rescues the ATRA-dependent phenotype. On the molecular level, ATRA signalling causes induction of TXNIP, a potent inhibitor of the physiological antioxidant thioredoxin (TRX1) and sensitizes cells to necrotic cell death upon hypoxia. 5ML-mediated prevention of ATRA effects were shown to be based on the inhibition of cellular ATRA uptake by interference with the cholesterol (and retinol) binding motif of the transmembrane protein STRA6. 5ML-mediated inhibition of ATRA uptake led to a strong reduction of ATRA-dependent gene expression, reduced ROS formation, and protection from necrotic cell death. As 5ML exerted a cardioprotective effect, also independent of its inhibition of cellular ATRA uptake, the agent likely has another cardioprotective property, which may rely on the induction of TRX1 activity. In summary, this is the first study to show i) that local retinoids in the early MI zone may worsen disease outcome, ii) that inhibition of endothelial retinoid uptake using 5ML may constitute a novel treatment strategy, and iii) that targeting endothelial and myocardial retinoid uptake (e.g. via STRA6 inhibition) may constitute a novel treatment target in acute MI.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Retinoides/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Humanos , Lignanas/farmacologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
J Nat Prod ; 82(7): 1839-1848, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31268709

RESUMO

Stilbenoids are important components of foods (e.g., peanuts, grapes, various edible berries), beverages (wine, white tea), and medicinal plants. Many publications have described the anti-inflammatory potential of stilbenoids, including the widely known trans-resveratrol and its analogues. However, comparatively little information is available regarding the activity of their prenylated derivatives. One new prenylated stilbenoid (2) was isolated from Artocarpus altilis and characterized structurally based on 1D and 2D NMR analysis and HRMS. Three other prenylated stilbenoids were prepared synthetically (9-11). Their antiphlogistic potential was determined by testing them together with known natural prenylated stilbenoids from Macaranga siamensis and Artocarpus heterophyllus in both cell-free and cell assays. The inhibition of 5-lipoxygenase (5-LOX) was also shown by simulated molecular docking for the most active stilbenoids in order to elucidate the mode of interaction between these compounds and the enzyme. Their effects on the pro-inflammatory nuclear factor-κB (NF-κB) and the activator protein 1 (AP-1) signaling pathway were also analyzed. The THP1-XBlue-MD2-CD14 cell line was used as a model for determining their anti-inflammatory potential, and lipopolysaccharide (LPS) stimulation of Toll-like receptor 4 induced a signaling cascade leading to the activation of NF-κB/AP-1. The ability of prenylated stilbenoids to attenuate the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was further evaluated using LPS-stimulated THP-1 macrophages.


Assuntos
Inflamação/prevenção & controle , Lipoxigenases/metabolismo , NF-kappa B/antagonistas & inibidores , Prenilação , Prostaglandina-Endoperóxido Sintases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Fator de Transcrição AP-1/antagonistas & inibidores , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Humanos
12.
Org Biomol Chem ; 16(38): 7019-7028, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30232493

RESUMO

Partial agonists of the transcription factor PPARγ (peroxisome proliferator-activated receptor γ) have shown potential for the treatment of metabolic and inflammatory conditions and novel activators serve as valuable tool and lead compounds. Based on the natural product magnolol (I) and recent structural information of the ligand-target interaction we have previously developed magnolol dimer (II) which has been shown to have enhanced affinity towards PPARγ and improved selectivity over RXRα (retinoid X receptor α), PPARγ's heterodimerization partner. In this contribution we report the synthesis and evaluation of three fragments of the dimeric lead compound by structural simplifications. Sesqui magnolol A and B (III and IV) were found to exhibit comparable activities to magnolol dimer (II) and selectivity over RXRα persisted. Computational studies suggest a common pharmacophore of the distinctive biphenyl motifs. Truncated magnolol dimer (V) on the other hand does not share this feature and was found to act as an antagonist.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Lignanas/química , Lignanas/farmacologia , PPAR gama/metabolismo , Compostos de Bifenilo/síntese química , Cristalografia por Raios X , Dimerização , Descoberta de Drogas , Células HEK293 , Humanos , Ligantes , Lignanas/síntese química , Simulação de Acoplamento Molecular , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Ligação Proteica , Receptor X Retinoide alfa/metabolismo
13.
J Nat Prod ; 80(4): 999-1006, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28322565

RESUMO

Geranyl flavones have been studied as compounds that potentially can be developed as anti-inflammatory agents. A series of natural geranylated flavanones was isolated from Paulownia tomentosa fruits, and these compounds were studied for their anti-inflammatory activity and possible mechanism of action. Two new compounds were characterized [paulownione C (17) and tomentodiplacone O (20)], and all of the isolated derivatives were assayed for their ability to inhibit cyclooxygenases (COX-1 and COX-2) and 5-lipoxygenase (5-LOX). The compounds tested showed variable degrees of activity, with several of them showing activity comparable to or greater than the standards used in COX-1, COX-2, and 5-LOX assays. However, only the compound tomentodiplacone O (20) showed more selectivity against COX-2 versus COX-1 when compared with ibuprofen. The ability of the test compounds to interact with the above-mentioned enzymes was supported by docking studies, which revealed the possible incorporation of selected test substances into the active sites of these enzymes. Furthermore, one of the COX/LOX dual inhibitors, diplacone (14) (a major geranylated flavanone of P. tomentosa), was studied in vitro to obtain a proteomic overview of its effect on inflammation in LPS-treated THP-1 macrophages, supporting its previously observed anti-inflammatory activity and revealing the mechanism of its anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Inibidores de Lipoxigenase/isolamento & purificação , Inibidores de Lipoxigenase/farmacologia , Magnoliopsida/química , Proteômica , Anti-Inflamatórios/química , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Flavonoides/química , Frutas/química , Inibidores de Lipoxigenase/química , Estrutura Molecular
14.
J Nat Prod ; 80(4): 965-974, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28319389

RESUMO

17ß-Hydroxysteroid dehydrogenase type 2 (17ß-HSD2) converts the active steroid hormones estradiol, testosterone, and 5α-dihydrotestosterone into their weakly active forms estrone, Δ4-androstene-3,17-dione, and 5α-androstane-3,17-dione, respectively, thereby regulating cell- and tissue-specific steroid action. As reduced levels of active steroids are associated with compromised bone health and onset of osteoporosis, 17ß-HSD2 is considered a target for antiosteoporotic treatment. In this study, a pharmacophore model based on 17ß-HSD2 inhibitors was applied to a virtual screening of various databases containing natural products in order to discover new lead structures from nature. In total, 36 hit molecules were selected for biological evaluation. Of these compounds, 12 inhibited 17ß-HSD2 with nanomolar to low micromolar IC50 values. The most potent compounds, nordihydroguaiaretic acid (1), IC50 0.38 ± 0.04 µM, (-)-dihydroguaiaretic acid (4), IC50 0.94 ± 0.02 µM, isoliquiritigenin (6), IC50 0.36 ± 0.08 µM, and ethyl vanillate (12), IC50 1.28 ± 0.26 µM, showed 8-fold or higher selectivity over 17ß-HSD1. As some of the identified compounds belong to the same structural class, structure-activity relationships were derived for these molecules. Thus, this study describes new 17ß-HSD2 inhibitors from nature and provides insights into the binding pocket of 17ß-HSD2, offering a promising starting point for further research in this area.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Produtos Biológicos/química , Inibidores Enzimáticos/química , Etiocolanolona/análogos & derivados , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Testosterona/metabolismo
15.
J Chem Inf Model ; 56(4): 747-62, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26882208

RESUMO

There is an increasing interest in the development of soluble epoxide hydrolase (sEH) inhibitors, which block the degradation of endogenous anti-inflammatory epoxyeicosatrienoic acids. Within this study, a set of pharmacophore models for sEH inhibitors was developed. The Specs database was virtually screened and a cell-free sEH activity assay was used for the biological investigation of virtual hits. In total, out of 48 tested compounds, 19 were sEH inhibitors with IC50 < 10 µM, representing a prospective true positive hit rate of 40%. Six of these compounds displayed IC50 values in the low nanomolar range. The most potent compound 21, a urea derivative, inhibited sEH with an IC50 = 4.2 nM. The applied approach also enabled the identification of diverse chemical scaffolds, e.g. the pyrimidinone derivative 29 (IC50 = 277 nM). The generated pharmacophore model set therefore represents a valuable tool for the selection of compounds for biological testing.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Domínio Catalítico , Humanos , Modelos Moleculares , Solubilidade , Relação Estrutura-Atividade , Interface Usuário-Computador
16.
Planta Med ; 82(11-12): 1110-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27286327

RESUMO

Over the last twenty years, tocotrienol analogues raised great interest because of their higher level and larger domain of biological activities when compared with tocopherols. Amongst the most promising therapeutic application, anti-inflammatory potency has been evaluated through the inhibition of various mediators of inflammation. Here, we worked on the isolation of two natural isoforms of garcinoic acid (i.e., δ and γ) from two different sources, respectively, Garcinia kola seeds and Garcinia amplexicaulis bark. We also developed semisynthetic strategies to access the other two non-natural α- and ß-garcinoic acid isoforms. In the next stage of our work, microsomal prostaglandin E2 synthase was defined as a target to evaluate the anti-inflammatory potential of the four garcinoic acid isomers. Both dimethylated isoforms, ß- and γ-garcinoic acid, exhibited the lowest IC50, 2.8 µM and 2.0 µM, respectively. These results showed that the affinity of tocotrienol analogues to microsomal prostaglandin E2 synthase-1 most probably contributes to the anti-inflammatory potential of this class of derivatives.


Assuntos
Benzopiranos/isolamento & purificação , Garcinia/química , Extratos Vegetais/isolamento & purificação , Prostaglandina-E Sintases/antagonistas & inibidores , Benzopiranos/síntese química , Benzopiranos/química , Linhagem Celular , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Isomerismo , Casca de Planta/química , Extratos Vegetais/farmacologia
17.
J Chem Inf Model ; 54(2): 367-71, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24502802

RESUMO

Agonists of liver X receptors (LXR) α and ß are important regulators of cholesterol metabolism, but agonism of the LXRα subtype appears to cause hepatic lipogenesis, suggesting LXRß-selective activators are attractive new lipid lowering drugs. In this work, pharmacophore modeling and shape-based virtual screening were combined to predict new LXRß-selective ligands. Out of the 10 predicted compounds, three displayed significant LXR activity. Two activated both LXR subtypes. The third compound activated LXRß 1.8-fold over LXRα.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Receptores Nucleares Órfãos/agonistas , Interface Usuário-Computador , Receptores X do Fígado , Conformação Molecular , Receptores Nucleares Órfãos/química
18.
Mediators Inflamm ; 2014: 178931, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24976682

RESUMO

Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 µM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 µM), quercetin (IC50 = 3.29 µM), and myricetin (IC50 = 4.02 µM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 µM) and COX-2 (IC50 = 3.40 µM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Vinho , Catálise , Inibidores de Ciclo-Oxigenase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Quercetina/farmacologia , Resveratrol , Estilbenos/farmacologia
19.
Biochem Pharmacol ; 226: 116340, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848779

RESUMO

The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-ß-CD (2-HP-ß-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-ß-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.

20.
Biomedicines ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37239139

RESUMO

Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA