Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674913

RESUMO

Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.


Assuntos
Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/genética , Plasmídeos/genética , Engenharia Tecidual
2.
J Biomater Sci Polym Ed ; 35(6): 851-868, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310545

RESUMO

To make tissue engineering a truly effective tool, it is necessary to understand how the patterns of specific tissue development are modulated by and depend on the artificial environment. Even the most advanced approaches still do not fully meet the requirements of practical engineering of tracheobronchial epithelium. This study aimed to test the ability of the synthetic and natural nonwoven scaffolds to support the formation of morphological sound airway epithelium including the basement membrane (BM). We also sought to identify the potential role of fibroblasts in this process. Our results showed that nonwoven scaffolds are generally suitable for producing well-differentiated tracheobronchial epithelium (with cilia and goblet cells), while the structure and functionality of the equivalents appeared to be highly dependent on the composition of the scaffolds. Unlike natural scaffolds, synthetic ones supported the formation of the epithelium only when epithelial cells were cocultured with fibroblasts. Fibroblasts also appeared to be obligatory for basal lamina formation, regardless of the type of the nonwoven material used. However, even in the presence of fibroblasts, the synthetic scaffolds were unable to support the formation of the epithelium and of the BM (in particular, basal lamina) as effectively as the natural scaffolds did.


Assuntos
Polímeros , Alicerces Teciduais , Alicerces Teciduais/química , Epitélio , Engenharia Tecidual/métodos , Fibroblastos
3.
J Biomed Mater Res A ; 112(2): 144-154, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921091

RESUMO

Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.


Assuntos
Nanofibras , Alicerces Teciduais , Gelatina/farmacologia , Engenharia Tecidual/métodos , Colágeno/farmacologia
4.
Polymers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37514391

RESUMO

The effect of primary amino acid sequence in recombinant spidroins on their spatial organization is crucial for the fabrication of artificial fibers and fibrous materials. This study focuses on the rheological properties of aqueous and alcoholic solutions of recombinant analogs of natural spidroins (rS1/9 and rS2/12), as well as the structure of their films and nanofibrous materials. Non-Newtonian flow behavior of aqueous solutions of these proteins was observed at certain concentrations in contrast to their solutions in hexafluoroisopropanol. The secondary structure of recombinant spidroins was addressed by IR spectroscopy, whereas their self-organization in various solvents was studied by AFM and cryo-TEM. The influence of the solvent on the structure and properties of the films and nanofibrous materials produced by electrospinning has been established.

5.
Biomedicines ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979723

RESUMO

This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.

6.
J Funct Biomater ; 13(4)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36278661

RESUMO

A significant drawback of the rigid synthetic vascular prostheses used in the clinic is the mechanical mismatch between the implant and the prosthetic vessel. When placing prostheses with radial elasticity, in which this deficiency is compensated, the integration of the graft occurs more favorably, so that signs of cell differentiation appear in the prosthesis capsule, which contributes to the restoration of vascular tone and the possibility of vasomotor reactions. Aortic prostheses fabricated by electrospinning from a blend of copolymers of vinylidene fluoride with hexafluoropropylene (VDF/HFP) had a biomechanical behavior comparable to the native aorta. In the present study, to ensure mechanical stability in the conditions of a living organism, the fabricated blood vessel prostheses (BVP) were cross-linked with γ-radiation. An optimal absorbed dose of 0.3 MGy was determined. The obtained samples were implanted into the infrarenal aorta of laboratory animals-Landrace pigs. Histological studies have shown that the connective capsule that forms around the prosthesis has signs of high tissue organization. This is evidenced by the cells of the fibroblast series located in layers oriented along and across the prosthesis, similar to the orientation of cells in a biological arterial vessel.

7.
Polymers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297930

RESUMO

The 3D reconstruction of 100 µm- and 600 µm-thick fibrous poly-L/L-lactide scaffolds was performed by confocal laser scanning microscopy and supported by scanning electron microscopy and showed that the density of the fibers on the side adjacent to the electrode is higher, which can affect cell diffusion, while the pore size is generally the same. Bone marrow mesenchymal stem cells cultured in a 600 µm-thick scaffold formed colonies and produced conditions for cell differentiation. An in vitro study of stem cells after 7 days revealed that cell proliferation and hepatocyte growth factor release in the 600 µm-thick scaffold were higher than in the 100 µm-thick scaffold. An in vivo study of scaffolds with and without stem cells implanted subcutaneously onto the backs of recipient mice was carried out to test their biodegradation and biocompatibility over a 0-3-week period. The cells seeded onto the 600 µm-thick scaffold promoted significant neovascularization in vivo. After 3 weeks, a significant number of donor cells persisted only on the inside of the 600 µm-thick scaffold. Thus, the use of bulkier matrices allows to prolong the effect of secretion of growth factors by stem cells during implantation. These 600 µm-thick scaffolds could potentially be utilized to repair and regenerate injuries with stem cell co-culture for vascularization of implant.

8.
Pharmaceutics ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683996

RESUMO

The main goal of our research was to fabricate electrospun scaffolds from three different silk proteins-silk fibroin from Bombyx mori silkworm cocoons and two recombinant spidroins, rS2/12 and rS2/12-RGDS-and to perform a comparative analysis of the structure, biological properties, and regenerative potential of the scaffolds in a full-thickness rat skin wound model. The surface and internal structures were investigated using scanning electron microscopy and scanning probe nanotomography. The structures of the scaffolds were similar. The average fiber diameter of the scaffolds was 315 ± 26 nm, the volume porosity was 94.5 ± 1.4%, the surface-to-volume ratio of the scaffolds was 25.4 ± 4.2 µm-1 and the fiber surface roughness was 3.8 ± 0.6 nm. The scaffolds were characterized by a non-cytotoxicity effect and a high level of cytocompatibility with cells. The scaffolds also had high regenerative potential-the healing of the skin wound was accelerated by 19 days compared with the control. A histological analysis did not reveal any fragments of the experimental constructions or areas of inflammation. Thus, novel data on the structure and biological properties of the silk fibroin/spidroin electrospun scaffolds were obtained.

9.
J Biomed Mater Res A ; 107(2): 312-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29896910

RESUMO

For efficient manufacturing of fibrous collagen-based materials by electrospinning, the search on optimal rheological parameters is of the great importance. Rheological characteristics and denaturation of collagen in aqueous dispersions were studied as a function of shear rate and acetic acid concentration in the range of 3-9% w/w at temperature from 20 to 40°C. It was shown that an increase in temperature, acetic acid concentration of the collagen dispersion leads to a significant decrease in its viscosity. It was found that helical conformation of the collagen macromolecules is preserved up to 31°C. An increase in acetic acid concentration leads to a reduction of denaturation temperature. The complex viscosity of collagen dispersions exhibits a sharp drop, followed by a rapid growth of damping factor in the temperature range from 22 to 35°C. Both storage (G') and loss (G″) moduli increase with frequency and collagen concentration. It was revealed that optimal parameters for electrospinning of highly concentrated collagen dispersions can be achieved by adjusting of the concentration of acetic acid, temperature, and stirring speed. As a result, collagen nonwoven materials with diameter from 100 to 700 nm were obtained. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 312-318, 2019.


Assuntos
Colágeno Tipo I/química , Nanofibras/química , Animais , Bovinos , Colágeno Tipo I/ultraestrutura , Nanofibras/ultraestrutura , Conformação Proteica em alfa-Hélice , Desnaturação Proteica , Reologia , Temperatura , Viscosidade
10.
J Biomed Mater Res B Appl Biomater ; 107(2): 253-268, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29603873

RESUMO

Artificial tissue-engineered grafts offer a potential alternative to autologous tissue grafts for patients, which can be traumatic. After decellularizing Papio hamadryas esophagus and studying the morphology and physical properties of the extracellular matrix (ECM), we generated electrospun polyamide-6 based scaffolds to mimic it. The scaffolds supported a greater mechanical load than the native ECM and demonstrated similar 3D microstructure, with randomly aligned fibers, 90% porosity, 29 µm maximal pore size, and average fiber diameter of 2.87 ± 0.95 µm. Biocompatibility studies showed that human adipose- and bone marrow-derived mesenchymal stromal cells (AD-MSC and BMD-MSC) adhered to the scaffold surface and showed some proliferation: scaffold cell coverage was 25% after 72 h of incubation when seeded with 1000 cells/mm2 ; cells elongated processes along the polyamide-6, although they flattened 1.67-4 times less than on cell culture plastic. Human umbilical vein endothelial cells, however, showed poor adherence and proliferation. We thus provide in vitro evidence that polyamide-6 scaffolds approximating the esophageal biomechanics and 3D topography of nonhuman primates may provide a biocompatible substrate for both AD-MSC and BMD-MSCs, supporting their adhesion and survival to some degree. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 253-268, 2019.


Assuntos
Caprolactama/análogos & derivados , Esôfago/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Caprolactama/química , Esôfago/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Papio hamadryas
11.
Cell Prolif ; 52(3): e12598, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900363

RESUMO

OBJECTIVES: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. MATERIALS AND METHODS: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. RESULTS: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseudostratified epithelial layer on the surface of the scaffold. In addition, keratinocytes formed a skin equivalent when seeded on the same scaffold. A comparative analysis of growth and differentiation for both types of epithelium was performed. CONCLUSIONS: The structural parameters of nanofibres should be selected experimentally depending on polymer composition. The major challenges on the way to obtain the well-differentiated equivalent of respiratory epithelium on non-woven scaffold include the following: the balance between scaffold permeability and thickness, proper combination of synthetic and natural components, and culture conditions sufficient for co-culturing of airway epithelial cells and fibroblasts. For generation of skin equivalent, the lack of diffusion is not so critical as for pseudostratified airway epithelium.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia/citologia , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Quitosana/química , Técnicas de Cocultura , Células Epiteliais/citologia , Fibroblastos/citologia , Gelatina/química , Humanos , Queratinócitos/citologia , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Poliésteres/química , Alicerces Teciduais/química , Traqueia/crescimento & desenvolvimento , Traqueia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA