RESUMO
Brucellosis is one of the most common zoonotic diseases worldwide. Almost 500,000 new human cases occur each year; yet there is no vaccine for human use. Moreover, there is no universal Brucella vaccine that would provide protection against all pathogenic species of Brucella. We generated a rough, live-attenuated B. neotomae strain by deleting the wboA gene encoding a glycosyltransferase. This strain lacks the O-side chain in its lipopolysaccharide (LPS) and thus the vaccinated animals can be differentiated serologically from the field-infected animals. We tested the efficacy of rough B. neotomae strain to stimulate dendritic cells compared to the smooth wild type strain. Based on TNF-α production, our data suggests that a significantly higher stimulation was obtained when dendritic cells were stimulated with the rough vaccine strain compared to the smooth wild type B. neotomae. Furthermore, the rough mutant was cleared from mice within 6 weeks even at a dose as high as 2 x 108 CFU. Vaccinated mice showed significantly higher level of protection against a virulent B. suis 1330 challenge compared to the control mice. Antibody titers in the mice and cytokine production by the splenocytes from the vaccinated mice showed a Th1 mediated immune response that correlated with the protection.