Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2311645, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659182

RESUMO

Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).

2.
Sci Technol Adv Mater ; 25(1): 2292485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259326

RESUMO

Among various metal-organic frameworks (MOFs), the zeolitic imidazole framework (ZIF), constructed by the regular arrangement of 2-methylimidazole and metal ions, has garnered significant attention due to its distinctive crystals and pore structures. Variations in the sizes and shapes of ZIF crystals have been reported by changing the synthesis parameters, such as the molar ratios of organic ligands to metal ions, choice of solvents, and temperatures. Nonetheless, the giant ZIF-8 single crystals beyond the typical range have rarely been reported. Herein, we present the synthesis of millimeter-scale single crystal ZIF-8 using the solvothermal method in N,N-diethylformamide. The resulting 1-mm single crystal is carefully characterized through N2 adsorption-desorption isotherms, scanning electron microscopy, and other analytical techniques. Additionally, single-crystal X-ray diffraction is employed to comprehensively investigate the framework's mobility at various temperatures.


Millimeter-sized ZIF-8 single crystals were synthesized using the solvothermal method. These crystals exhibit a notable BET surface area of 1681 m2∙g−1 and demonstrate a reversible change in their crystal structure.

3.
Chem Sci ; 15(24): 9147-9154, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903239

RESUMO

Lattice strain effects on the piezoelectric properties of crystalline ferroelectrics have been extensively studied for decades; however, the strain dependence of the piezoelectric properties at nano-level has yet to be investigated. Herein, a new overview of the super-strain of nanoporous polycrystalline ferroelectrics is reported for the first time using a nanoengineered barium calcium zirconium titanate composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCZT). Atomic-level investigations show that the controlled pore wall thickness contributes to highly strained lattice structures that also retain the crystal size at the optimal value (<30 nm), which is the primary contributor to high piezoelectricity. The strain field derived from geometric phase analysis at the atomic level and aberration-corrected high-resolution scanning transmission electron microscopy (STEM) yields of over 30% clearly show theoretical agreement with high piezoelectric properties. The uniqueness of this work is the simplicity of the synthesis; moreover the piezoresponse d 33 becomes giant, at around 7500 pm V-1. This response is an order of magnitude greater than that of lead zirconate titanate (PZT), which is known to be the most successful ferroelectric over the past 50 years. This concept utilizing nanoporous BCZT will be highly useful for a promising high-density electrolyte-free dielectric capacitor and generator for energy harvesting in the future.

4.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 3): 306-312, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371538

RESUMO

Precise single-crystal structure analyses of the title compound, bis-(glycinium) sulfate-glycine (1/1), 2C2H6NO2 +·SO4 2-·C2H5NO2 (or C6H17N3O10S), non-deuterated triglycine sulfate (HTGS) at 20 K and 298 K were undertaken using time-of-flight neutron diffraction data. At 20 K for the O-H⋯O hydrogen bond between the glycinium cation and the zwitterionic, unprotonated glycine mol-ecule that is associated with the ferroelectric behaviour of HTGS, O-H = 1.070 (3), H⋯O = 1.408 (3) [δ = 0.338 (4)], O⋯O = 2.4777 (15) Šand O-H⋯O = 179.0 (4)°, which is in good agreement with previous studies. Two reasonable structures for the same three atoms were refined for the 298 K dataset. One is a single-minimum potential-energy model, with O-H = 1.090 (12), H⋯O = 1.361 (12) [δ = 0.271 (17)], O⋯O = 2.450 (7) Šand O-H⋯O = 179.2 (10)°, having the H atom with a large ellipticity along the bond path between the O atoms. The other is a double-minimum potential-energy model having two H atom sites with occupancies of 0.876 (8) and 0.124 (8): for the major occupancy component, O-H = 1.065 (12), H⋯O = 1.387 (12), O⋯O = 2.451 (7) Šand O-H⋯O = 178.2 (11)° and for the minor component, O-H = 1.06 (4), H⋯O = 1.41 (4), O⋯O = 2.451 (7) Šand O-H⋯O = 166 (2)°. These models did not show any significant differences in R factors. In addition, the unit-cell parameters and other structural parameters of HTGS did not show any major differences compared to those of partially deuterated TGS and fully deuterated TGS for both 20 K and 298 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA