RESUMO
Charcot-Marie-Tooth (CMT) disease type 1 is an inherited peripheral neuropathy characterized by demyelination and reduced nerve conduction velocities. We present a multi-generational family with peripheral neuropathy in whom clinical CMT panel testing failed to conclude a molecular diagnosis. We found a PMP2 pathogenic variant c.155Tâ¯>â¯C, p.(Ile52Thr) that segregates with disease suggesting that PMP2 variants should be considered in patients with neuropathy and that it may be prudent to include in clinical CMT gene panels.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteína P2 de Mielina/genética , Patologia Molecular , Doenças do Sistema Nervoso Periférico/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Humanos , Mutação , Condução Nervosa/genética , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/patologiaRESUMO
We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Transtornos Cognitivos/genética , Deficiências do Desenvolvimento/genética , Retrovirus Endógenos/genética , Hipotonia Muscular/genética , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Transtornos Cognitivos/diagnóstico , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/diagnóstico , Fácies , Feminino , Ordem dos Genes , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Hipotonia Muscular/diagnóstico , Fenótipo , Alinhamento de Sequência , Síndrome , Adulto JovemRESUMO
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a myocardial disease characterized by fibro-fatty replacement of right ventricular free wall myocardium and life-threatening ventricular arrhythmias. A missense mutation, c.1073C>T (p.S358L) in the transmembrane protein 43 (TMEM43) gene, has been genetically identified to cause ARVC type 5 in a founder population from Newfoundland. It is unclear whether this mutation occurs in other populations outside of this founder population or if other variants of TMEM43 are associated with ARVC disease. We sought to identify non-Newfoundland individuals with TMEM43 variants among patient samples sent for genetic assessment for possible ARVC. Of 195 unrelated individuals with suspected ARVC, mutation of desmosomal proteins was seen in 28 and the p.S358L TMEM43 mutation in six. We identified a de novo p.S358L mutation in a non-Newfoundland patient and five separate rare TMEM43 (four novel) sequence variants in non-Newfoundland patients, each occurring in an evolutionarily conserved amino acid. TMEM43 mutations occur outside of the founder population of the island of Newfoundland where it was originally described. TMEM43 sequencing should be incorporated into clinical genetic testing for ARVC patients.
Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Desmossomos/genética , Desmossomos/metabolismo , Efeito Fundador , Predisposição Genética para Doença , Ventrículos do Coração/fisiopatologia , Heterozigoto , Humanos , Proteínas de Membrana/metabolismo , Terra Nova e Labrador , Linhagem , Análise de Sequência de DNARESUMO
SOX5 encodes a transcription factor involved in the regulation of chondrogenesis and the development of the nervous system. Despite its important developmental roles, SOX5 disruption has yet to be associated with human disease. We report one individual with a reciprocal translocation breakpoint within SOX5, eight individuals with intragenic SOX5 deletions (four are apparently de novo and one inherited from an affected parent), and seven individuals with larger 12p12 deletions encompassing SOX5. Common features in these subjects include prominent speech delay, intellectual disability, behavior abnormalities, and dysmorphic features. The phenotypic impact of the deletions may depend on the location of the deletion and, consequently, which of the three major SOX5 protein isoforms are affected. One intragenic deletion, involving only untranslated exons, was present in a more mildly affected subject, was inherited from a healthy parent and grandparent, and is similar to a deletion found in a control cohort. Therefore, some intragenic SOX5 deletions may have minimal phenotypic effect. Based on the location of the deletions in the subjects compared to the controls, the de novo nature of most of these deletions, and the phenotypic similarities among cases, SOX5 appears to be a dosage-sensitive, developmentally important gene.
Assuntos
Transtornos Dismórficos Corporais/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos Mentais/genética , Fatores de Transcrição SOXD/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 12 , Feminino , Humanos , MasculinoRESUMO
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with variability in clinical manifestations and molecular causes. In most cases, patients with BWS have normal development. Cases with developmental delay are usually attributed to neonatal hypoglycemia or chromosome abnormalities involving copy number variation for genes beyond the critical BWS region at 11p15.5. Brain abnormalities have not previously been recognized within the BWS phenotypic spectrum. We report on seven cases of BWS associated with posterior fossa abnormalities. Of these, two cases presented with Blake's pouch cyst, two with Dandy-Walker variant (DWV; hypoplasia of the inferior part of the vermis), one with Dandy-Walker malformation (DWM) and one with a complex of DWM, dysgenesis of the corpus callosum and brain stem abnormality. In all these cases, molecular findings involved the centromeric imprinted domain on chromosome locus 11p15.5, which includes imprinting center 2 (IC2) and the imprinted growth suppressor gene, CDKN1C. Three cases had loss of methylation at IC2, two had CDKN1C mutations, and one had loss of methylation at IC2 and a microdeletion. In one case no mutation/methylation abnormality was detected. These findings together with previously reported correlations suggest that genes in imprinted domain 2 at 11p15.5 are involved in normal midline development of several organs including the brain. Our data suggest that brain malformations may present as a finding within the BWS phenotype when the molecular etiology involves imprinted domain 2. Brain imaging may be useful in identifying such malformations in individuals with BWS and neurodevelopmental issues.
Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Encéfalo/anormalidades , Síndrome de Beckwith-Wiedemann/complicações , Síndrome de Beckwith-Wiedemann/genética , Encéfalo/patologia , Pré-Escolar , Cromossomos Humanos Par 11 , Inibidor de Quinase Dependente de Ciclina p57/genética , Metilação de DNA , Evolução Fatal , Feminino , Deleção de Genes , Impressão Genômica , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , MutaçãoRESUMO
Interstitial deletions of the short arm of chromosome 6 are rare and have been associated with developmental delay, hypotonia, congenital anomalies, and dysmorphic features. We used array comparative genomic hybridization in a South Carolina Autism Project (SCAP) cohort of 97 subjects with autism spectrum disorders (ASDs) and identified an ~ 5.4 Mb deletion on chromosome 6p22.3-p23 in a 15-year-old patient with intellectual disability and ASDs. Subsequent database queries revealed five additional individuals with overlapping submicroscopic deletions and presenting with developmental and speech delay, seizures, behavioral abnormalities, heart defects, and dysmorphic features. The deletion found in the SCAP patient harbors ATXN1, DTNBP1, JARID2, and NHLRC1 that we propose may be responsible for ASDs and developmental delay.