Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 294(37): 13755-13768, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346033

RESUMO

Protection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth. Here, we designed peptides derived from the native viral protein to increase the affinity of these peptides for the MAST2-PDZ domain. Our strategy involved modifying the length and flexibility of the noninteracting sequence linking the two subsites anchoring the peptide to the PDZ domain. Three peptides, Neurovita1 (NV1), NV2, and NV3, were selected, and we found that they all had increased affinities for the MAST2-PDZ domain, with Kd values decreasing from 1300 to 60 nm, while target selectivity was maintained. A parallel biological assay evaluating neurite extension and branching in cell cultures revealed that the NV peptides gradually improved neural activity, with the efficacies of these peptides for stimulating neurite outgrowth mirroring their affinities for MAST2-PDZ. We also show that NVs can be delivered into the cytoplasm of neurons as a gene or peptide. In summary, our findings indicate that virus-derived peptides targeted to MAST2-PDZ stimulate neurite outgrowth in several neuron types, opening up promising avenues for potentially using NVs in the management of neurodegenerative diseases.


Assuntos
Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Domínios PDZ/fisiologia , Estimulantes do Sistema Nervoso Central/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Microtúbulos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Vírus da Raiva , Relação Estrutura-Atividade , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
2.
Biochem J ; 469(1): 159-68, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25942057

RESUMO

Phosphatase and tensin homologue (PTEN) and microtubule-associated serine threonine kinase 2 (MAST2) are key negative regulators of survival pathways in neuronal cells. The two proteins interact via the PDZ (PSD-95, Dlg1, Zo-1) domain of MAST2 (MAST2-PDZ). During infection by rabies virus, the viral glycoprotein competes with PTEN for interaction with MAST2-PDZ and promotes neuronal survival. The C-terminal PDZ-binding motifs (PBMs) of the two proteins bind similarly to MAST2-PDZ through an unconventional network of connectivity involving two anchor points. Combining stopped-flow fluorescence, analytical ultracentrifugation (AUC), microcalorimetry and NMR, we document the kinetics of interaction between endogenous and viral ligands to MAST2-PDZ as well as the dynamic and structural effects of these interactions. Viral and PTEN peptide interactions to MAST2-PDZ occur via a unique kinetic step which involves both canonical C-terminal PBM binding and N-terminal anchoring. Indirect effects induced by the PBM binding include modifications to the structure and dynamics of the PDZ dimerization surface which prevent MAST2-PDZ auto-association. Such an energetic communication between binding sites and distal surfaces in PDZ domains provides interesting clues for protein regulation overall.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Vírus da Raiva/química , Proteínas Virais/química , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Vírus da Raiva/metabolismo , Proteínas Virais/metabolismo
3.
J Am Chem Soc ; 134(50): 20533-43, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23171049

RESUMO

PTEN phosphatase is a tumor suppressor controlling notably cell growth, proliferation and survival. The multisite phosphorylation of the PTEN C-terminal tail regulates PTEN activity and intracellular trafficking. The dynamical nature of such regulatory events represents a crucial dimension for timing cellular decisions. Here we show that NMR spectroscopy allows reporting on the order and kinetics of clustered multisite phosphorylation events. We first unambiguously identify in vitro seven bona fide sites modified by CK2 and GSK3ß kinases and two new sites on the PTEN C-terminal tail. Then, monitoring the formation of transient intermediate phosphorylated states, we determine the sequence of these reactions and calculate their apparent rate constants. Finally, we assess the dynamic formation of these phosphorylation events induced by endogenous kinases directly in extracts of human neuroblastoma cells. Taken together, our data indicate that two cascades of events controlled by CK2 and GSK3ß occur independently on two clusters of sites (S380-S385 and S361-S370) and that in each cluster the reactions follow an ordered model with a distributive kinetic mechanism. Besides emphasizing the ability of NMR to quantitatively and dynamically follow post-translational modifications, these results bring a temporal dimension on the establishment of PTEN phosphorylation cascades.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Ressonância Magnética Nuclear Biomolecular , PTEN Fosfo-Hidrolase/química , Fosforilação
4.
Prog Biophys Mol Biol ; 119(1): 53-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25748547

RESUMO

PDZ (PSD-95/Dlg/ZO-1) domains play a major role in neuronal homeostasis in which they act as scaffold domains regulating cellular trafficking, self-association and catalytic activity of essential proteins such as kinases and phosphatases. Because of their central role in cell signaling, cellular PDZ-containing proteins are preferential targets of viruses to hijack cellular function to their advantage. Here, we describe how the viral G protein of the rabies virus specifically targets the PDZ domain of neuronal enzymes during viral infection. By disrupting the complexes formed by cellular enzymes and their ligands, the virus triggers drastic effect on cell signaling and commitment of the cell to either survival (virulent strains) or death (vaccinal strains). We provide structural and biological evidences that the viral proteins act as competitors endowed with specificity and affinity in an essential cellular process by mimicking PDZ binding motif of cellular partners. Disruption of critical endogenous protein-protein interactions by viral protein drastically alters intracellular protein trafficking and catalytic activity of cellular proteins that control cell homeostasis. This work opens up many perspectives to mimic viral sequences and developing innovative therapies to manipulate cellular homeostasis.


Assuntos
Neurônios/metabolismo , Domínios PDZ , Vírus da Raiva/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/enzimologia , Neurônios/virologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 4/metabolismo , Vírus da Raiva/metabolismo
5.
Sci Signal ; 5(237): ra58, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22894835

RESUMO

PTEN (phosphatase and tensin homolog deleted on chromosome 10) and MAST2 (microtubule-associated serine and threonine kinase 2) interact with each other through the PDZ domain of MAST2 (MAST2-PDZ) and the carboxyl-terminal (C-terminal) PDZ domain-binding site (PDZ-BS) of PTEN. These two proteins function as negative regulators of cell survival pathways, and silencing of either one promotes neuronal survival. In human neuroblastoma cells infected with rabies virus (RABV), the C-terminal PDZ domain of the viral glycoprotein (G protein) can target MAST2-PDZ, and RABV infection triggers neuronal survival in a PDZ-BS-dependent fashion. These findings suggest that the PTEN-MAST2 complex inhibits neuronal survival and that viral G protein disrupts this complex through competition with PTEN for binding to MAST2-PDZ. We showed that the C-terminal sequences of PTEN and the viral G protein bound to MAST2-PDZ with similar affinities. Nuclear magnetic resonance structures of these complexes exhibited similar large interaction surfaces, providing a structural basis for their binding specificities. Additionally, the viral G protein promoted the nuclear exclusion of PTEN in infected neuroblastoma cells in a PDZ-BS-dependent manner without altering total PTEN abundance. These findings suggest that formation of the PTEN-MAST2 complex is specifically affected by the viral G protein and emphasize how disruption of a critical protein-protein interaction regulates intracellular PTEN trafficking. In turn, the data show how the viral protein might be used to decipher the underlying molecular mechanisms and to clarify how the subcellular localization of PTEN regulates neuronal survival.


Assuntos
Glicoproteínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Vírus da Raiva/metabolismo , Proteínas Virais/metabolismo , Ligação Competitiva , Western Blotting , Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Glicoproteínas/química , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Proteínas Associadas aos Microtúbulos/química , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios PDZ/fisiologia , PTEN Fosfo-Hidrolase/química , Proteínas Serina-Treonina Quinases/química , Espectrometria de Fluorescência , Proteínas Virais/química
6.
Sci Signal ; 3(105): ra5, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20086240

RESUMO

The capacity of a rabies virus to promote neuronal survival (a signature of virulence) or death (a marker of attenuation) depends on the cellular partners recruited by the PDZ-binding site (PDZ-BS) of its envelope glycoprotein (G). Neuronal survival requires the selective association of the PDZ-BS of G with the PDZ domains of two closely related serine-threonine kinases, MAST1 and MAST2. Here, we found that a single amino acid change in the PDZ-BS triggered the apoptotic death of infected neurons and enabled G to interact with additional PDZ partners, in particular the tyrosine phosphatase PTPN4. Knockdown of PTPN4 abrogated virus-mediated apoptosis. Thus, we propose that attenuation of rabies virus requires expansion of the set of host PDZ proteins with which G interacts, which interferes with the finely tuned homeostasis required for survival of the infected neuron.


Assuntos
Vírus da Raiva/patogenicidade , Proteínas do Envelope Viral/fisiologia , Substituição de Aminoácidos , Animais , Apoptose , Citoplasma , Camundongos , Neurônios/virologia , Domínios PDZ , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 4 , Raiva , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Virulência
7.
Biomol NMR Assign ; 3(1): 45-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19636944

RESUMO

Most of microbes hijack the cellular machinery to their advantage by interacting with specific target of the host cell. Glycoprotein of rabies virus is a key factor controlling the homeostasis of infected neuronal cells and proteins belonging to the human microtubule associated serine threonine kinase family have been identified as potential cellular partners. As a first step towards its structural study, we have assigned the backbone and side chain nuclei resonances of the PDZ domain (PSD-95, Discs Large, ZO-1) of MAST205 in complex with the C-terminal residues of the glycoprotein of rabies virus. The BMRB accession code is 155972.


Assuntos
Glicoproteínas/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas aos Microtúbulos/química , Proteínas Serina-Treonina Quinases/química , Vírus da Raiva/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Isótopos de Carbono/química , Dados de Sequência Molecular , Complexos Multiproteicos/química , Isótopos de Nitrogênio/química , Ligação Proteica , Estrutura Terciária de Proteína , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA