Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 48(D1): D431-D439, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31701147

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program with the goal of generating a large-scale and comprehensive catalogue of perturbation-response signatures by utilizing a diverse collection of perturbations across many model systems and assay types. The LINCS Data Portal (LDP) has been the primary access point for the compendium of LINCS data and has been widely utilized. Here, we report the first major update of LDP (http://lincsportal.ccs.miami.edu/signatures) with substantial changes in the data architecture and APIs, a completely redesigned user interface, and enhanced curated metadata annotations to support more advanced, intuitive and deeper querying, exploration and analysis capabilities. The cornerstone of this update has been the decision to reprocess all high-level LINCS datasets and make them accessible at the data point level enabling users to directly access and download any subset of signatures across the entire library independent from the originating source, project or assay. Access to the individual signatures also enables the newly implemented signature search functionality, which utilizes the iLINCS platform to identify conditions that mimic or reverse gene set queries. A newly designed query interface enables global metadata search with autosuggest across all annotations associated with perturbations, model systems, and signatures.


Assuntos
Biologia Celular , Bases de Dados Factuais , Ensaios Clínicos como Assunto , Biologia Computacional , Curadoria de Dados , Humanos , Armazenamento e Recuperação da Informação , Metadados , National Institutes of Health (U.S.) , Estados Unidos , Interface Usuário-Computador
2.
Nucleic Acids Res ; 46(D1): D558-D566, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140462

RESUMO

The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content.


Assuntos
Bases de Dados Factuais , Biologia Celular , Biologia Computacional , Curadoria de Dados , Bases de Dados Genéticas , Epigenômica , Humanos , Metadados , Proteômica , Software , Biologia de Sistemas , Interface Usuário-Computador
3.
BMC Bioinformatics ; 18(Suppl 17): 556, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29322930

RESUMO

BACKGROUND: Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. RESULTS: CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CONCLUSIONS: CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.


Assuntos
Mama/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Neoplasias/genética , Apoptose/efeitos dos fármacos , Mama/citologia , Mama/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Macrolídeos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tiazolidinas/farmacologia
4.
Toxicol Mech Methods ; 24(1): 73-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24156546

RESUMO

Based on recently published initial experimental results on the intercalation of a class of broad spectrum antiparasitic compounds, we present a purely theoretical approach for determining if these compounds may preferentially intercalate with guanosine/cytosine (GC)-rich or adenosine/thymidine (TA)-rich regions of DNA. The predictive model presented herein is based upon utilization of density functional theory (DFT) to determine a priori how the best intercalator may energetically and sterically interact with each of the nucleoside base pairs. A potential new method using electrostatic potential maps (EPMs) to visually select the best poses is introduced and compared to the existing brute-force center of mass (COM) approach. The EPM and COM predictions are in agreement with each other, but the EPM method is potentially much more efficient. We report that 4-azatryptantrin, the best intercalator, is predicted to favor π-stacking with GC over that of TA by approximately 2-4 kcal/mol. This represents a significant difference if one takes into account the Boltzmann distribution at physiological temperature. This theoretical method will be utilized to guide future experimental studies on the elucidation of possible mechanism(s) for the action of these antiparasitic compounds at the molecular level.


Assuntos
DNA/química , DNA/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
5.
Sci Rep ; 9(1): 4055, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858563

RESUMO

Olfaction is a key component of the multimodal approach used by mosquitoes to target and feed on humans, spreading various diseases. Current repellents have drawbacks, necessitating development of more effective agents. In addition to variable odorant specificity subunits, all insect odorant receptors (ORs) contain a conserved odorant receptor co-receptor (Orco) subunit which is an attractive target for repellent development. Orco directed antagonists allosterically inhibit odorant activation of ORs and we previously showed that an airborne Orco antagonist could inhibit insect olfactory behavior. Here, we identify novel, volatile Orco antagonists. We functionally screened 83 structurally diverse compounds against Orco from Anopheles gambiae. Results were used for training machine learning models to rank probable activity of a library of 1280 odorant molecules. Functional testing of a representative subset of predicted active compounds revealed enrichment for Orco antagonists, many structurally distinct from previously known Orco antagonists. Novel Orco antagonist 2-tert-butyl-6-methylphenol (BMP) inhibited odorant responses in electroantennogram and single sensillum recordings in adult Drosophila melanogaster and inhibited OR-mediated olfactory behavior in D. melanogaster larvae. Structure-activity analysis of BMP analogs identified compounds with improved potency. Our results provide a new approach to the discovery of behaviorally active Orco antagonists for eventual use as insect repellents/confusants.


Assuntos
Comportamento Animal , Proteínas de Drosophila/genética , Repelentes de Insetos/química , Receptores Odorantes/genética , Animais , Anopheles/efeitos dos fármacos , Anopheles/patogenicidade , Drosophila melanogaster/genética , Humanos , Proteínas de Insetos , Insetos/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Aprendizado de Máquina , Odorantes , Olfato/efeitos dos fármacos , Olfato/genética
6.
J Mol Graph Model ; 80: 138-146, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29346080

RESUMO

A new submolecular quantitative structure activity relationship (QSAR) descriptor was applied toward elucidating the anti-malarial pharmacophore of tryptanthrins, a class of compounds known for their anti-parasitic activities. The new descriptor is based on experimental and computational measurements of the tunneling barriers of individual lobes of the molecular orbitals. Lobe-by-lobe QSAR correlation plots revealed a single lobe of the LUMO to be strongly associated with tryptanthrin's anti-malarial activity. The correlation also showed a threshold behavior wherein barriers below a particular value show low IC50 values. Above the threshold, the correlation of IC50 vs the logarithm of the barrier is linear with R2 = 0.999. This barrier threshold may be applied as a design criterion for future tryptanthrin-based anti-malarial lead optimization. The new descriptor may be broadly applicable toward other molecular systems of interest, such as catalysts, pesticides, and herbicides. The authors have named the new descriptor: submolecular tunneling analysis of barriers (STAB).


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Quinazolinas/química , Quinazolinas/farmacologia , Desenho de Fármacos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
7.
Sci Data ; 5: 180117, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29917015

RESUMO

The NIH-funded LINCS Consortium is creating an extensive reference library of cell-based perturbation response signatures and sophisticated informatics tools incorporating a large number of perturbagens, model systems, and assays. To date, more than 350 datasets have been generated including transcriptomics, proteomics, epigenomics, cell phenotype and competitive binding profiling assays. The large volume and variety of data necessitate rigorous data standards and effective data management including modular data processing pipelines and end-user interfaces to facilitate accurate and reliable data exchange, curation, validation, standardization, aggregation, integration, and end user access. Deep metadata annotations and the use of qualified data standards enable integration with many external resources. Here we describe the end-to-end data processing and management at the DCIC to generate a high-quality and persistent product. Our data management and stewardship solutions enable a functioning Consortium and make LINCS a valuable scientific resource that aligns with big data initiatives such as the BD2K NIH Program and concords with emerging data science best practices including the findable, accessible, interoperable, and reusable (FAIR) principles.


Assuntos
Curadoria de Dados , Metadados , Animais , Conjuntos de Dados como Assunto , Humanos , Armazenamento e Recuperação da Informação , National Institutes of Health (U.S.) , Estados Unidos
8.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29199020

RESUMO

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Assuntos
Catalogação/métodos , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos/normas , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Armazenamento e Recuperação da Informação/métodos , Programas Nacionais de Saúde , National Institutes of Health (U.S.)/normas , Transcriptoma , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA