Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(20): 2089-2098, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38271661

RESUMO

ABSTRACT: von Willebrand factor (VWF) is an essential contributor to microvascular thrombosis. Physiological cleavage by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) limits its prothrombotic properties, explaining why ADAMTS13 deficiency leads to attacks of microthrombosis in patients with thrombotic thrombocytopenic purpura (TTP). We previously reported that plasminogen activation takes place during TTP attacks in these patients. Furthermore, stimulation of plasminogen activation attenuates pathogenesis in preclinical TTP models in vivo. This suggests that plasmin is an endogenous regulator of VWF thrombogenicity, in particular when ADAMTS13 falls short to prevent microvascular occlusions. VWF cleavage by plasmin is biochemically distinct from cleavage by ADAMTS13. We hypothesized that plasmin-cleaved VWF (cVWF) holds value as a biomarker of microvascular thrombosis. Here, we describe the development of a variable domain of heavy-chain-only antibody (VHH)-based bioassay that can distinguish cVWF from intact and ADAMTS13-cleaved VWF in plasma. We validate this assay by tracking cVWF release during degradation of microthombi in vitro. We demonstrate that endogenous cVWF formation takes place in patients with TTP during acute attacks of thrombotic microangiopathy but not in those in remission. Finally, we show that therapeutic plasminogen activation in a mouse model of TTP amplifies cVWF formation, which is accompanied by VWF clearance. Our combined findings indicate that cVWF is released from microthrombi in the context of microvascular occlusion.


Assuntos
Proteína ADAMTS13 , Biomarcadores , Fibrinolisina , Púrpura Trombocitopênica Trombótica , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/sangue , Animais , Camundongos , Fibrinolisina/metabolismo , Púrpura Trombocitopênica Trombótica/metabolismo , Púrpura Trombocitopênica Trombótica/sangue , Púrpura Trombocitopênica Trombótica/diagnóstico , Trombose/metabolismo , Trombose/sangue , Trombose/patologia , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/sangue , Feminino
2.
Curr Opin Hematol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723202

RESUMO

PURPOSE OF REVIEW: Von Willebrand factor (VWF) plays a pivotal role in primary hemostasis. A Disintegrin And Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) is primarily responsible for cleaving ultra-large VWF multimers into smaller, less adhesive forms. However, plasmin has also been shown to cleave VWF multimers. This proteolytic cleavage of VWF results in a decreased multimer size and, hence, a lower VWF activity. This review aims to present a comprehensive overview of the involvement of plasmin-mediated VWF proteolysis in (micro)thrombosis. RECENT FINDINGS: Plasmin-mediated VWF proteolysis has been suggested to play a role in various pathologies involving microthrombosis in combination with an imbalance in VWF antigen levels and ADAMTS13 activity, as well as activation of the fibrinolytic system, but quantitative assays to demonstrate this were lacking. Recently, a VHH-based bioassay was developed designed specifically to quantify plasmin-cleaved VWF (cVWF). The novel ELISA assay holds significant promise for gaining further insights into the clinical relevance of plasmin-mediated VWF proteolysis in several pathologies. Furthermore, local plasmin activation at the site of microthrombosis has been shown to be a promising treatment strategy by degrading VWF-rich microthrombi. SUMMARY: Plasmin-mediated proteolysis of VWF is observed during microthrombosis; however, it remains unclear whether it impacts disease severity. A novel ELISA method to detect cVWF will improve our understanding of the clinical role of plasmin-mediated VWF degradation.

3.
Stroke ; 55(5): 1181-1190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38525646

RESUMO

BACKGROUND: Resistance to r-tPA (recombinant tissue-type plasminogen activator) is a well-known but poorly understood phenomenon that hampers successful recanalization in patients with acute ischemic stroke. Using clinically relevant thrombi from patients with acute ischemic stroke, we investigated if and how thrombus composition impacts r-tPA-mediated lysis. In addition, we explored strategies to overcome r-tPA resistance. METHODS: Thrombi were split into 2 parts, 1 of which was used for thrombolysis and the other for detailed histological analysis. Thrombolysis was performed in normal human plasma using r-tPA alone, using r-tPA in combination with DNase-1 or using r-tPA in combination with N,N'-diacetyl-l-cystine. Thrombus lysis was calculated as the percentage of residual thrombus weight compared with its initial weight and the degree of lysis was linked to thrombus composition determined via histology. RESULTS: Interestingly, we found that the efficacy of r-tPA-mediated thrombolysis was strongly correlated with the composition of the thrombi. Thrombi containing high amounts of red blood cells and low amounts of DNA and von Willebrand Factor were efficiently degraded by r-tPA, whereas thrombi containing low amounts of red blood cells and higher amounts of DNA and von Willebrand Factor were resistant to r-tPA. Importantly, combination of r-tPA with DNase-1 or N,N'-diacetyl-l-cystine significantly and specifically improved the lysis of these r-tPA-resistant thrombi. CONCLUSIONS: Using patient thrombus material, our results for the first time show that the composition of stroke thrombi largely determines their susceptibility to r-tPA-mediated thrombolysis. Red blood cell-poor thrombi have a specific resistance to r-tPA, which can be overcome by targeting nonfibrin components using DNase-1 or N,N'-diacetyl-l-cystine.

4.
Blood ; 139(4): 597-607, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34752601

RESUMO

Thrombotic microangiopathies are hallmarked by attacks of disseminated microvascular thrombosis. In thrombotic thrombocytopenic purpura (TTP), this is caused by a rise in thrombogenic ultra-large von Willebrand factor (VWF) multimers because of ADAMTS13 deficiency. We previously reported that systemic plasminogen activation is therapeutic in a TTP mouse model. In contrast to its natural activators (ie, tissue plasminogen activator and urokinase plasminogen activator [uPA]), plasminogen can directly bind to VWF. For optimal efficacy and safety, we aimed to focus and accelerate plasminogen activation at sites of microvascular occlusion. We here describe the development and characterization of Microlyse, a fusion protein consisting of a high-affinity VHH targeting the CT/CK domain of VWF and the protease domain of uPA, for localized plasminogen activation on microthrombi. Microlyse triggers targeted destruction of platelet-VWF complexes by plasmin on activated endothelial cells and in agglutination studies. At equal molar concentrations, Microlyse degrades microthrombi sevenfold more rapidly than blockade of platelet-VWF interactions with a bivalent humanized VHH (caplacizumab*). Finally, Microlyse attenuates thrombocytopenia and tissue damage (reflected by increased plasma lactate dehydrogenase activity, as well as PAI-1 and fibrinogen levels) more efficiently than caplacizumab* in an ADAMTS13-/- mouse model of TTP, without affecting hemostasis in a tail-clip bleeding model. These findings show that targeted thrombolysis of VWF by Microlyse is an effective strategy for the treatment of TTP and might hold value for other forms of VWF-driven thrombotic disease.


Assuntos
Fibrinolíticos/uso terapêutico , Microangiopatias Trombóticas/tratamento farmacológico , Fator de von Willebrand/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Microangiopatias Trombóticas/metabolismo
5.
Haematologica ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572559

RESUMO

Innate myeloid cells especially neutrophils and their extracellular traps are known to promote intravascular coagulation and thrombosis formation in infections and various other conditions. Innate myeloid cell dependent fibrin formation can support systemic immunity while its dysregulation enhances the severity of infectious diseases. Less is known about the immune mechanisms preventing dysregulation of fibrin homeostasis in infection. During experimental systemic infections local fibrin deposits in the liver microcirculation cause rapid arrest of CD4+ T cells. Arrested T helper cells mostly represent Th17 cells that partially originate from the small intestine. Intravascular fibrin deposits activate mouse and human CD4+ T cells which can be mediated by direct fibrin - CD4+ T cell interactions. Activated CD4+ T cells suppress fibrin deposition and microvascular thrombosis by directly counteracting coagulation activation by neutrophils and classical monocytes. T cell activation, which is initially triggered by IL- 12p40- and MHC-II dependent mechanisms, enhances intravascular fibrinolysis via LFA-1. Moreover, CD4+ T cells disfavor the association of the fibrinolysis inhibitor TAFI with fibrin whereby fibrin deposition is increased by TAFI in the absence but not presence of T cells. In human infections thrombosis development is inversely related to microvascular levels of CD4+ T cells. Thus, fibrin promotes LFA-1 dependent T helper cell activation in infections which drives a negative feedback cycle that rapidly restricts intravascular fibrin and thrombosis development.

6.
PLoS Comput Biol ; 19(7): e1010965, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428797

RESUMO

Hemodynamics is crucial for the activation and aggregation of platelets in response to flow-induced shear. In this paper, a novel image-based computational model simulating blood flow through and around platelet aggregates is presented. The microstructure of aggregates was captured by two different modalities of microscopy images of in vitro whole blood perfusion experiments in microfluidic chambers coated with collagen. One set of images captured the geometry of the aggregate outline, while the other employed platelet labelling to infer the internal density. The platelet aggregates were modelled as a porous medium, the permeability of which was calculated with the Kozeny-Carman equation. The computational model was subsequently applied to study hemodynamics inside and around the platelet aggregates. The blood flow velocity, shear stress and kinetic force exerted on the aggregates were investigated and compared under 800 s-1, 1600 s-1 and 4000 s-1 wall shear rates. The advection-diffusion balance of agonist transport inside the platelet aggregates was also evaluated by local Péclet number. The findings show that the transport of agonists is not only affected by the shear rate but also significantly influenced by the microstructure of the aggregates. Moreover, large kinetic forces were found at the transition zone from shell to core of the aggregates, which could contribute to identifying the boundary between the shell and the core. The shear rate and the rate of elongation flow were investigated as well. The results imply that the emerging shapes of aggregates are highly correlated to the shear rate and the rate of elongation. The framework provides a way to incorporate the internal microstructure of the aggregates into the computational model and yields a better understanding of the hemodynamics and physiology of platelet aggregates, hence laying the foundation for predicting aggregation and deformation under different flow conditions.


Assuntos
Plaquetas , Hemodinâmica , Plaquetas/fisiologia , Velocidade do Fluxo Sanguíneo , Microfluídica , Agregação Plaquetária/fisiologia , Estresse Mecânico
7.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108326

RESUMO

Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we investigated the potential of two novel, non-immunosuppressive, non-peptidic small-molecule cyclophilin inhibitors (SMCypIs) to limit thrombosis in vitro, in comparison with the cyclophilin inhibitor and immunosuppressant Cyclosporin A (CsA). Both cyclophilin inhibitors significantly decreased procoagulant platelet formation upon dual-agonist stimulation, shown by a decreased phosphatidylserine (PS) exposure, as well as a reduction in the loss of mitochondrial membrane potential. Furthermore, the SMCypIs potently reduced procoagulant platelet-dependent clotting time, as well as fibrin formation under flow, comparable to CsA. No effect was observed on agonist-induced platelet activation measured by P-selectin expression, as well as CypA-mediated integrin αIIbß3 activation. Importantly, whereas CsA increased Adenosine 5'-diphosphate (ADP)-induced platelet aggregation, this was unaffected in the presence of the SMCypIs. We here demonstrate specific cyclophilin inhibition does not affect normal platelet function, while a clear reduction in procoagulant platelets is observed. Reducing platelet procoagulant activity by inhibiting cyclophilins with SMCypIs forms a promising strategy to limit thrombosis.


Assuntos
Ciclofilinas , Trombose , Camundongos , Animais , Humanos , Ciclofilinas/metabolismo , Camundongos Knockout , Plaquetas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
8.
Blood ; 129(8): 1030-1038, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28011677

RESUMO

Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic disorder diagnosed by thrombocytopenia and hemolytic anemia, associated with a deficiency in von Willebrand factor (VWF)-cleaving protease ADAMTS13. Current treatment is based on plasma infusion for congenital TTP, or plasma exchange, often in combination with immunosuppressive agents, for acquired TTP. These treatment methods are not always effective; therefore, new treatment methods are highly necessary. N-acetylcysteine (NAC), an FDA-approved anti-mucolytic agent, is a possible new treatment strategy for TTP, as it was demonstrated to reduce disulfide bonds in VWF, thereby decreasing VWF multimers size and hence their prothrombotic potential. We investigated whether NAC, without concurrent plasma exchange and immunosuppressive therapy, is effective in preventing and resolving TTP signs, using well-established murine and baboon models for TTP. In mice, prophylactic administration of NAC was effective in preventing severe TTP signs. This in vivo finding was supported by in vitro data demonstrating the VWF multimer-reducing properties of NAC in solution. Nonetheless, in both mice and baboons, administration of NAC was not effective in resolving preexisting TTP signs; thrombocytopenia, hemolytic anemia, and organ damage could not be reversed, as thrombus resolution was not achieved. Failure to improve clinical outcome occurred even though a reduction in VWF multimers was observed, demonstrating that NAC was efficient in reducing disulfide bonds in circulating VWF multimers. In conclusion, prophylactic administration of NAC, without concurrent plasma exchange, was effective in preventing severe TTP signs in mice, but NAC was not effective in resolving preexistent acute TTP signs in mice and baboons.


Assuntos
Acetilcisteína/uso terapêutico , Multimerização Proteica/efeitos dos fármacos , Púrpura Trombocitopênica Trombótica/prevenção & controle , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Papio , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/genética , Púrpura Trombocitopênica Trombótica/metabolismo , Fator de von Willebrand/química
9.
Semin Thromb Hemost ; 42(1): 9-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595154

RESUMO

Von Willebrand factor (VWF) is one of the most important proteins of the hemostatic system. Its multimeric state is essential for its natural function to guide platelets to sites of injury. ADAMTS13 is the key protease that regulates the multimeric state of VWF. Without ADAMTS13, VWF multimers can grow to pathologically large sizes. This is a risk factor for the life-threatening condition thrombotic thrombocytopenic purpura (TTP). In this condition, VWF-rich thrombi occlude the microvasculature of various tissues. Intriguingly, a complete ADAMTS13 deficiency does not cause continuous TTP, either in patients or genetically targeted mice. Instead, TTP occurs in episodes of disease, separated by extended periods of remission. This indicates that regulating factors beyond ADAMTS13 are likely involved in this pathologic cascade of events. This raises the question of what really happens when ADAMTS13 is (temporarily) unavailable. In this review, we explore the possible role of complementary mechanisms that are capable of modifying the thrombogenic potential of VWF.


Assuntos
Proteínas ADAM/metabolismo , Púrpura Trombocitopênica Trombótica/metabolismo , Fator de von Willebrand/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS13 , Animais , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Púrpura Trombocitopênica Trombótica/genética , Púrpura Trombocitopênica Trombótica/patologia , Fator de von Willebrand/genética
10.
Circ Res ; 114(5): 780-91, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24406984

RESUMO

RATIONALE: Platelets are the most important cells in the primary prevention of blood loss after injury. In addition, platelets are at the interface between circulating leukocytes and the (sub)endothelium regulating inflammatory responses. OBJECTIVE: Our aim was to study the dynamic process that leads to the formation of procoagulant and proinflammatory platelets under physiological flow. METHODS AND RESULTS: In the present study, we describe the formation of extremely long, negatively charged membrane strands that emerge from platelets adhered under flow. These flow-induced protrusions (FLIPRs) are formed in vitro on different physiological substrates and are also detected in vivo in a mouse carotid injury model. FLIPRs are formed downstream the adherent and activated platelets and reach lengths of 250 µm. FLIPR formation is shear-dependent and requires cyclophilin D, calpain, and Rac1 activation. It is accompanied by a disassembly of the F-actin and microtubule organization. Monocytes and neutrophils roll over FLIPRs in a P-selectin/P-selectin glycoprotein ligand-1-dependent manner, retrieving fragments of FLIPRs as microparticles on their surface. Consequently, monocytes and neutrophils become activated, as demonstrated by increased CD11b expression and L-selectin shedding. CONCLUSIONS: The formation of long platelet membrane extensions, such as the ones presented in our flow model, may pave the way to generate an increased membrane surface for interaction with monocytes and neutrophils. Our study provides a mechanistic model for platelet membrane transfer and the generation of monocyte/neutrophil-microparticle complexes. We propose that the formation of FLIPRs in vivo contributes to the well-established proinflammatory function of platelets and platelet-derived microparticles.


Assuntos
Plaquetas/citologia , Plaquetas/imunologia , Lesões das Artérias Carótidas/imunologia , Micropartículas Derivadas de Células/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Cálcio/metabolismo , Lesões das Artérias Carótidas/patologia , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Voluntários Saudáveis , Humanos , Camundongos , Monócitos/citologia , Neutrófilos/citologia , Ativação Plaquetária/imunologia , Fluxo Sanguíneo Regional/imunologia , Estresse Mecânico
11.
Arterioscler Thromb Vasc Biol ; 35(11): 2336-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26338302

RESUMO

OBJECTIVE: The metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) regulates the size of von Willebrand factor multimers. A deficiency in ADAMTS13 activity is associated with the life-threatening disease thrombotic thrombocytopenic purpura (TTP). The vast majority of patients have acquired TTP, where circulating anti-ADAMTS13 autoantibodies are causative for the decreased ADAMTS13 activity. Current treatment consists of plasma exchange, but improved therapies are highly warranted. APPROACH AND RESULTS: We have developed a new rat model mimicking various aspects of acquired TTP to investigate the therapeutic efficacy of human recombinant ADAMTS13. A polyclonal antibody against ADAMTS13 completely blocked endogenous rat ADAMTS13 activity in Sprague-Dawley rats. When TTP was triggered using recombinant von Willebrand factor, the animals displayed severe TTP-like symptoms, such as thrombocytopenia, hemolytic anemia, and von Willebrand factor-rich thrombi in the kidneys and brain. Subsequent injection of 400, 800, or 1600 U/kg recombinant ADAMTS13 prevented full development of these symptoms. Analysis of plasma samples confirmed that recombinant ADAMTS13 was able to override circulating anti-ADAMTS13 inhibitory antibodies, resulting in restoration of ADAMTS13 activity and degradation of ultralarge von Willebrand factor multimers. CONCLUSIONS: Recombinant ADAMTS13 was shown to be effective in averting severe acquired TTP-like symptoms in rats and holds promising value for the treatment of this severe and life-threatening disease in humans.


Assuntos
Proteínas ADAM/farmacologia , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/sangue , Proteínas ADAM/imunologia , Proteína ADAMTS13 , Anemia Hemolítica/sangue , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/prevenção & controle , Animais , Anticorpos , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Masculino , Púrpura Trombocitopênica Trombótica/sangue , Púrpura Trombocitopênica Trombótica/induzido quimicamente , Púrpura Trombocitopênica Trombótica/imunologia , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Índice de Gravidade de Doença , Fatores de Tempo , Fator de von Willebrand
12.
Circulation ; 129(12): 1320-31, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24449821

RESUMO

BACKGROUND: Von Willebrand factor (VWF) multimer size is controlled through continuous proteolysis by ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type I motif, member 13). This prevents spontaneous platelet agglutination and microvascular obstructions. ADAMTS13 deficiency is associated with thrombotic thrombocytopenic purpura, in which life-threatening episodes of microangiopathy damage kidneys, heart, and brain. Enigmatically, a complete ADAMTS13 deficiency does not lead to continuous microangiopathy. We hypothesized that plasmin, the key enzyme of the fibrinolytic system, serves as a physiological backup enzyme for ADAMTS13 in the degradation of pathological platelet-VWF complexes. METHODS AND RESULTS: Using real-time microscopy, we determined that plasmin rapidly degrades platelet-VWF complexes on endothelial cells in absence of ADAMTS13, after activation by urokinase-type plasminogen activator or the thrombolytic agent streptokinase. Similarly, plasmin degrades platelet-VWF complexes in platelet agglutination studies. Plasminogen directly binds to VWF and its A1 domain in a lysine-dependent manner, as determined by enzyme-linked immunosorbent assay. Plasma levels of plasmin-α2-antiplasmin complexes increase with the extent of thrombocytopenia in patients with acute episodes of thrombotic thrombocytopenic purpura, independent of ADAMTS13 activity. This indicates that plasminogen activation takes place during microangiopathy. Finally, we show that the thrombolytic agent streptokinase has therapeutic value for Adamts13(-/-) mice in a model of thrombotic thrombocytopenic purpura. CONCLUSIONS: We propose that plasminogen activation on endothelial cells acts as a natural backup for ADAMTS13 to degrade obstructive platelet-VWF complexes. Our findings indicate that thrombolytic agents may have therapeutic value in the treatment of microangiopathies and may be useful to bypass inhibitory antibodies against ADAMTS13 that cause thrombotic thrombocytopenic purpura.


Assuntos
Proteínas ADAM/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Microangiopatias Trombóticas/metabolismo , Fator de von Willebrand/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Proteína ADAMTS13 , Animais , Autoanticorpos/metabolismo , Plaquetas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Plasminogênio/metabolismo , Púrpura Trombocitopênica Trombótica/metabolismo , Estreptoquinase/metabolismo , Estreptoquinase/farmacologia , Microangiopatias Trombóticas/tratamento farmacológico , Fator de von Willebrand/química
13.
J Thromb Haemost ; 22(7): 1936-1946, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554935

RESUMO

BACKGROUND: Laboratory diagnosis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) remains challenging when ADAMTS-13 activity ranges between 10% and 20%. To prevent misdiagnosis, open ADAMTS-13 conformation gained clinical attention as a novel biomarker, especially to diagnose acute iTTP in patients with diagnostic undecisive ADAMTS-13 activity. Plasma ADAMTS-13 conformation analysis corrects for ADAMTS-13 antigen, with both parameters being characterized in enzyme-linked immunosorbent assay (ELISA)-based reference assays requiring expert technicians. OBJECTIVES: To design ADAMTS-13 antigen and conformation assays on automated, easy-to-use fiber optic surface plasmon resonance (FO-SPR) technology to promote assay accessibility and diagnose challenging iTTP patients. METHODS: ADAMTS-13 antigen and conformation assays were designed on FO-SPR technology. Plasma of 20 healthy donors and 20 acute iTTP patients were quantified, and data from FO-SPR and ELISA reference assays were compared. RESULTS: Following assay design, both antigen and conformation FO-SPR assays were optimized and characterized, presenting strong analytical sensitivity (detection limit of 0.001 µg/mL) and repeatability (interassay variation of 14.4%). Comparative analysis suggested positive correlation (Spearman r of 0.92) and good agreement between FO-SPR and ELISA assays. As expected, FO-SPR assays showed a closed or open ADAMTS-13 conformation in healthy donors and acute iTTP patients, respectively. CONCLUSION: Both ADAMTS-13 antigen and conformation assays were transferred onto automated, easy-to-use FO-SPR technology, displaying potent analytical sensitivity and reproducibility. ADAMTS-13 antigen and conformation were determined for healthy donors and acute iTTP patients showing strong correlation with ELISA reference. Introducing FO-SPR technology in clinical context could support routine diagnosis of acute iTTP patients, notably when ADAMTS-13 activity fluctuates between 10% and 20%.


Assuntos
Proteína ADAMTS13 , Ensaio de Imunoadsorção Enzimática , Púrpura Trombocitopênica Trombótica , Ressonância de Plasmônio de Superfície , Proteína ADAMTS13/sangue , Proteína ADAMTS13/imunologia , Humanos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/sangue , Púrpura Trombocitopênica Trombótica/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Casos e Controles , Biomarcadores/sangue , Reprodutibilidade dos Testes , Conformação Proteica , Valor Preditivo dos Testes , Imunoensaio/métodos , Automação Laboratorial , Feminino , Masculino
14.
J Thromb Haemost ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897388

RESUMO

INTRODUCTION: Achieving first pass recanalization (FPR) has become the primary procedural objective during thrombectomy in acute ischemic stroke patients as it correlates with the best clinical outcome. Understanding factors contributing to FPR failures is essential to enhance FPR success rates. As the central target of thrombectomy, the thrombus itself may be a significant factor influencing FPR. This study aims to investigate the association between thrombus composition and FPR success rates. METHODS: In total, thrombi from 267 ischemic stroke patients were collected in the AZ Groeninge Hospital (Kortrijk, Belgium). Thrombus composition was determined via detailed histological analysis of red blood cells (RBC), fibrin, von Willebrand factor, platelets, leukocytes, citrullinated histone 3 (marker for neutrophil extracellular traps) and intra- and extracellular DNA. FPR was defined as obtaining a modified Thrombolysis in Cerebral Ischemia (mTICI) score of 2c/3 after the first pass. RESULTS: An mTICI score of 2c/3 was obtained in 180 patients, which was achieved via a successful FPR procedure in 126 cases or after multiple passes in 54 cases. Interestingly, thrombi from FPR cases had a different composition than thrombi that needed multiple passes to obtain mTICI 2c/3. FPR thrombi contained significantly more RBC (p=0.0264), less fibrin (p=0.0196) and less extracellular DNA (p=0.0457). CONCLUSIONS: Our results indicate that thrombi characterized by lower RBC content, higher fibrin levels, and increased extracellular DNA are less likely to result in a FPR. These results are important to guide future research aiming at improving procedures or technologies to obtain FPR-rates in RBC-poor thrombi.

15.
J Thromb Haemost ; 22(2): 493-502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37866519

RESUMO

BACKGROUND: ADAMTS-13 adopts an open conformation in patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP) in acute phase while being closed in healthy donors. We reported that a substantial number of patients with iTTP in remission with restored ADAMTS-13 activity (>50%) still had an open ADAMTS-13 conformation, although a closed conformation is expected given the extent of remission. OBJECTIVES: To investigate whether open ADAMTS-13, represented by a conformation index >0.5, is associated with a risk of earlier ADAMTS-13 and/or clinical relapse. METHODS: We collected follow-up data (ADAMTS-13 parameters, ADAMTS-13 and clinical relapse, and treatment) from 81 patients with iTTP in remission with ADAMTS-13 activity >50%. RESULTS: During follow-up, 19 ADAMTS-13 and 10 clinical relapses were reported (median follow-up period, 20 months). First, open or closed ADAMTS-13 conformation was dichotomized based on the 0.5 conformation index cutoff. Open ADAMTS-13 (conformation index, >0.5) was not identified as a risk factor for ADAMTS-13 and clinical relapse (log-rank test and Cox regression model). In contrast, by identifying the optimal conformation index cutoff for relapse prediction, using classification and regression tree analysis, a conformation index >0.645 and >0.835 was shown to be a risk factor for ADAMTS-13 relapse (hazard ratio, 3.3; 95% CI, 1.3-8.3; P = .01) and clinical relapse (hazard ratio, 4.4; 95% CI, 1.3-15.3; P = .02), respectively. CONCLUSION: Patients with open ADAMTS-13 with a conformation index >0.645 and >0.835 have a >3- and >4-fold higher risk of earlier ADAMTS-13 and clinical relapse, respectively. Hence, ADAMTS-13 conformation index could be used to complement ADAMTS-13 activity monitoring to timely notice ADAMTS-13 relapse and prevent clinical relapse.


Assuntos
Proteína ADAMTS13 , Púrpura Trombocitopênica Trombótica , Humanos , Autoanticorpos , Modelos de Riscos Proporcionais , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/terapia , Recidiva , Fatores de Risco
16.
Res Pract Thromb Haemost ; 7(1): 100028, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36852112

RESUMO

Background: Thromboinflammatory processes modulate the complex pathophysiology of cerebral ischemia-reperfusion (I/R) injury in ischemic stroke, but the exact underlying mechanisms remain poorly understood. Emerging evidence indicates that neutrophil extracellular traps (NETs) might play an important role in the thromboinflammatory cascade. In addition, the link between von Willebrand factor (VWF) and neutrophil recruitment in the ischemic brain might promote thromboinflammation, possibly by the formation of NETs. Objectives: To study NET formation in a murine model of cerebral I/R injury in ischemic stroke. Methods: The filament-induced transient middle cerebral artery occlusion model was used to induce 60 minutes of focal cerebral ischemia after which reperfusion was allowed. At different time points postischemia, NETs were identified in the ischemic mouse brain using quantitative immunofluorescence microscopy. Results: NETs could be identified in the ipsilateral brain hemisphere. Interestingly, NETs could already be detected at 6 hours poststroke. Their presence increased at 12 hours, was highest at 24 hours, and decreased again 48 hours postischemia. Remarkably, NETs were predominantly localized within the brain vasculature postischemia, suggesting that NETs play a role in secondary microthrombosis. Strikingly, NET formation was significantly decreased in VWF-deficient mice compared to littermate wild-type mice 24 hours postischemia, indicating a possible role for VWF in promoting NETosis in the ischemic brain. Conclusion: This study identified the spatiotemporal profile of NET formation in a mouse model of cerebral I/R injury in ischemic stroke. NETs, potentially in combination with VWF, might be attractive targets for the development of novel therapeutic strategies in ischemic stroke treatment.

17.
J Thromb Haemost ; 21(5): 1090-1099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696190

RESUMO

Congenital thrombotic thrombocytopenic purpura (cTTP) is caused by a severe deficiency in the plasma metalloprotease ADAMTS-13. The current management of cTTP is dependent on the prophylactic administration of ADAMTS-13 via plasma infusion. This is a demanding therapy for patients because transfusions are lifelong and time-consuming and allergic reactions frequently occur. Although current management of cTTP controls acute episodes, it does not provide a long-lasting cure for this disease. The endogenous expression of ADAMTS-13 after gene transfer would provide a curative therapy and ongoing research explores various preclinical gene therapeutic approaches for cTTP. This review focuses on the current state of the literature regarding preclinical gene therapy studies for cTTP and on the challenges of developing a gene therapy medicinal product for cTTP.


Assuntos
Púrpura Trombocitopênica Trombótica , Humanos , Púrpura Trombocitopênica Trombótica/genética , Púrpura Trombocitopênica Trombótica/terapia , Proteína ADAMTS13 , Plasma , Transfusão de Sangue , Terapia Genética/efeitos adversos
18.
Blood Adv ; 7(1): 131-140, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306339

RESUMO

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an ultrarare thrombotic disease caused by autoantibody-induced ADAMTS13 deficiency. Open ADAMST13 conformation, induced by autoantibodies, was identified as a novel biomarker for iTTP. Determining immunoprofiles in patients with iTTP has been shown to guide the development of novel targeted therapies. However, these studies were done in mainly Caucasian iTTP cohorts. To validate those findings across other ethnic cohorts, we investigated 195 acute TTP plasma samples from the Japanese iTTP registry. Seventy-six of the 195 samples had detectable ADAMTS13 antigen levels, of which 94.7% were shown to have an open ADAMTS13 conformation. A positive correlation was observed between ADAMTS13 inhibitor titers (a diagnostic parameter in Japan) and anti-ADAMTS13 immunoglobulin G autoantibody titers. Studying anti-M, anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, anti-CUB1-2 autoantibodies and the corresponding immunoprofile showed that 73% of the patients had anti-CS autoantibodies and 25.8% had anti-M autoantibodies, with the latter being higher than in Caucasians. Stratifying patients according to their immunoprofiles revealed that the profile with only anti-CS autoantibodies was the most common immunoprofile similar to that in Caucasians (28.9%). Although this profile did not affect the 1-year TTP-related mortality rate, patients with autoantibodies against all 6 ADAMTS13 fragments had a higher risk for TTP-related death than other patients (P = .02). We here validated open ADAMTS13 as a novel biomarker for acute iTTP and determined the dominant immunoprofiling in the Japanese cohort, contributing to setting up the diagnosis and managing guidelines across different ethnic cohorts and developing ADAMTS13 variants that do not bind to the anti-CS autoantibodies.


Assuntos
Púrpura Trombocitopênica Trombótica , Humanos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/terapia , População do Leste Asiático , Autoanticorpos , Biomarcadores , Conformação Molecular , Proteína ADAMTS13/metabolismo
19.
J Thromb Haemost ; 21(3): 682-690, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696198

RESUMO

BACKGROUND: Congenital thrombotic thrombocytopenic purpura is caused by defects in the ADAMTS13 gene. ADAMTS13 is normally preactivated by conformational changes of the Metalloprotease (M) domain. Studying a novel congenital thrombotic thrombocytopenic purpura p.R102S mutation in the M domain, which results in undetectable ADAMTS13 activity in the patient, could help to explain the patients' phenotype and to elucidate the currently unclear mechanism of allosteric preactivation. OBJECTIVES: To investigate the in vitro effect of p.R102S mutation on ADAMTS13 secretion, activity, and allosteric preactivation. METHODS: Molecular modeling was used to study the effect of the mutation on the stability of ADAMTS13. Recombinant mutant ADAMTS13 was generated by transient and stable transfection of, respectively, CHO K1 and HEK293-T cells. ADAMTS13 antigen was measured in enzyme-linked immunosorbent assay. ADAMTS13 activity was measured in a FRETS-VWF73 assay. Allosteric preactivation was assessed in FRETS-VWF73 assay, using monoclonal antibody (mAb) 17G2 that normally induces a ∼2-fold increase in activity, and in enzyme-linked immunosorbent assay using mAb 6A6 recognizing a cryptic epitope in the M domain that becomes exposed after binding of 17G2. RESULTS: p.R102S mutation destabilizes the interactions between the M and Disintegrin-like (D) domain. p.R102S mutant secretion was impaired (35% of wild type) and activity was severely reduced (12% of wild type). p.R102S mutant could still be activated and the cryptic epitope of 6A6 was still fully exposed by 17G2 addition. CONCLUSION: p.R102S mutation destabilizes the M-D domain interactions, causing impaired ADAMTS13 secretion and activity, which explains the patients' phenotype. Allosteric preactivation of ADAMTS13 remains conserved in the presence of the p.R102S mutation.


Assuntos
Púrpura Trombocitopênica Trombótica , Humanos , Púrpura Trombocitopênica Trombótica/genética , Proteínas ADAM/química , Células HEK293 , Mutação , Epitopos , Proteína ADAMTS13/genética
20.
Mol Ther Nucleic Acids ; 33: 75-92, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37416759

RESUMO

Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbß, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface receptor for von Willebrand factor, being essential for platelet adhesion and aggregation. According to the affected gene, we distinguish BSS type A1 (GP1BA), type B (GP1BB), or type C (GP9). Pathogenic variants in these genes cause absent, incomplete, or dysfunctional GPIb-V-IX receptor and, consequently, a hemorrhagic phenotype. Using gene-editing tools, we generated knockout (KO) human cellular models that helped us to better understand GPIb-V-IX complex assembly. Furthermore, we developed novel lentiviral vectors capable of correcting GPIX expression, localization, and functionality in human GP9-KO megakaryoblastic cell lines. Generated GP9-KO induced pluripotent stem cells produced platelets that recapitulated the BSS phenotype: absence of GPIX on the membrane surface and large size. Importantly, gene therapy tools reverted both characteristics. Finally, hematopoietic stem cells from two unrelated BSS type C patients were transduced with the gene therapy vectors and differentiated to produce GPIX-expressing megakaryocytes and platelets with a reduced size. These results demonstrate the potential of lentiviral-based gene therapy to rescue BSS type C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA