Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Res ; 101(8): 1305-1323, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37012516

RESUMO

Orexin-A (OXA) is a hypothalamic neuropeptide implicated in the regulation of wakefulness, appetite, reward processing, muscle tone, motor activity, and other physiological processes. The broad range of systems affected stems from the widespread projections of orexin neurons toward multiple brain regions regulating numerous physiological processes. Orexin neurons integrate nutritional, energetic, and behavioral cues and modulate the functions of target structures. Orexin promotes spontaneous physical activity (SPA), and we recently showed that orexin injected into the ventrolateral preoptic area (VLPO) of the hypothalamus increases behavioral arousal and SPA in rats. However, the specific mechanisms underlying the role of orexin in physical activity are unknown. Here we tested the hypothesis that OXA injected into the VLPO alters the oscillatory activity in the electroencephalogram (EEG) to reflect an increased excitability of the sensorimotor cortex, which may explain the associated increase in SPA. The results showed that OXA increased wakefulness following injections into the VLPO. In addition, OXA altered the power spectrum of the EEG during the awake state by decreasing the power of 5-19 Hz oscillations and increasing the power of >35 Hz oscillations, which are markers of increased sensorimotor excitability. Consistently, we found that OXA induced greater muscle activity. Furthermore, we found a similar change in power spectrum during slow-wave sleep, which suggests that OXA altered the EEG activity in a fundamental way, even in the absence of physical activity. These results support the idea that OXA increases the excitability of the sensorimotor system, which may explain the corresponding increase in awake time, muscle tone, and SPA.


Assuntos
Tono Muscular , Área Pré-Óptica , Ratos , Animais , Orexinas/farmacologia , Orexinas/metabolismo , Área Pré-Óptica/metabolismo , Sono/fisiologia , Hipotálamo/metabolismo , Vigília/fisiologia
2.
Int J Obes (Lond) ; 43(9): 1759-1768, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30568267

RESUMO

BACKGROUND/OBJECTIVES: Inadequate sleep increases obesity and environmental noise contributes to poor sleep. However, women may be more vulnerable to noise and hence more susceptible to sleep disruption-induced weight gain than men. In male rats, exposure to environmental (i.e. ambient) noise disrupts sleep and increases feeding and weight gain. However, the effects of environmental noise on sleep and weight gain in female rats are unknown. Thus, this study was designed to determine whether noise exposure would disturb sleep, increase feeding and weight gain and alter the length of the estrous cycle in female rats. SUBJECTS/METHODS: Female rats (12 weeks old) were exposed to noise for 17d (8 h/d during the light period) to determine the effects of noise on weight gain and food intake. In a separate set of females, estrous cycle phase and length, EEG, EMG, spontaneous physical activity and energy expenditure were recorded continuously for 27d during baseline (control, 9d), noise exposure (8 h/d, 9d) and recovery (9d) from sleep disruption. RESULTS: Noise exposure significantly increased weight gain and food intake compared to females that slept undisturbed. Noise also significantly increased wakefulness, reduced sleep and resulted in rebound sleep during the recovery period. Total energy expenditure was significantly lower during both noise exposure and recovery due to lower energy expenditure during spontaneous physical activity and sleep. Notably, noise did not alter the estrous cycle length. CONCLUSIONS: As previously observed in male rats, noise exposure disrupted sleep and increased weight gain in females but did not alter the length of the estrous cycle. This is the first demonstration of weight gain in female rats during sleep disruption. We conclude that the sleep disruption caused by exposure to environmental noise is a significant tool for determining how sleep loss contributes to obesity in females.


Assuntos
Metabolismo Energético/efeitos da radiação , Ruído/efeitos adversos , Privação do Sono/etiologia , Aumento de Peso/efeitos da radiação , Animais , Feminino , Hiperfagia/etiologia , Ratos , Ratos Sprague-Dawley , Sono/efeitos da radiação
3.
Am J Physiol Regul Integr Comp Physiol ; 306(10): R714-21, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24598463

RESUMO

When exploring biological determinants of spontaneous physical activity (SPA), it is critical to consider whether methodological factors differentially affect rodents and the measured SPA. We determined whether acclimation time, sensory stimulation, vendor, or chamber size affected measures in rodents with varying propensity for SPA. We used principal component analysis to determine which SPA components (ambulatory and vertical counts, time in SPA, and distance traveled) best described the variability in SPA measurements. We compared radiotelemetry and infrared photobeams used to measure SPA and exploratory activity. Acclimation time, sensory stimulation, vendor, and chamber size independently influenced SPA, and the effect was moderated by the propensity for SPA. A 24-h acclimation period prior to SPA measurement was sufficient for habituation. Principal component analysis showed that ambulatory and vertical measurements of SPA describe different dimensions of the rodent's SPA behavior. Smaller testing chambers and a sensory attenuation cubicle around the chamber reduced SPA. SPA varies between rodents purchased from different vendors. Radiotelemetry and infrared photobeams differ in their sensitivity to detect phenotypic differences in SPA and exploratory activity. These data highlight methodological considerations in rodent SPA measurement and a need to standardize SPA methodology.


Assuntos
Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Raios Infravermelhos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Análise de Componente Principal/métodos , Ratos , Ratos Sprague-Dawley , Telemetria
4.
J Neurosci Methods ; 402: 110030, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042303

RESUMO

BACKGROUND: A noninvasive method that can accurately quantify sleep before, during, and after sleep disruption (SD) has not been validated in female rats across their estrous cycle. In female rats, we hypothesized that the duration of physical inactivity (PIA) required to predict sleep would 1) change with the differences in baseline sleep between the circadian and estrous cycle phases and 2) predict sleep and the change in sleep (Δsleep) before, during, and after SD independent of circadian and estrous cycle phase. NEW METHODS: EEG, EMG, physical activity and estrous cycle phase were measured in female Sprague-Dawley rats before, during, and after SD. Sleep was determined by two methods [EEG/EMG and a duration of continuous PIA (i.e., PIA criterion)]. Reliability between the methods was tested with a previously validated criterion (40 s). Sensitivity analyses and criterion-related validity analyses for sleep during SD and recovery were conducted across multiple PIA criteria (10 s-120 s). Predictability between the two methods and Δsleep was calculated. RESULTS/COMPARISON WITH EXISTING METHODS: Three criteria (10 s, 20 s, 30 s) predicted baseline sleep independent of circadian and estrous cycle phase. Sleep during SD and recovery were predicted by two criteria (30 s and 10 s). Δsleep between study periods was not reliably predicted by a single PIA criterion. CONCLUSION: PIA predicted sleep independent of estrous cycle phase in female rats. However, the specific criterion was dependent upon the study period (before, during, and after SD) and circadian phase. Thus, prior work validating a PIA criterion in male rodents is not applicable to the female rat.


Assuntos
Ciclo Estral , Sono , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Ritmo Circadiano
5.
Am J Physiol Endocrinol Metab ; 304(2): E131-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23169787

RESUMO

A major side effect of insulin treatment of diabetes is weight gain, which limits patient compliance and may pose additional health risks. Although the mechanisms responsible for this weight gain are poorly understood, it has been suggested that there may be a link to the incidence of recurrent episodes of hypoglycemia. Here we present a rodent model of marked weight gain associated with weekly insulin-induced hypoglycemic episodes in the absence of diabetes. Insulin treatment caused a significant increase in both body weight and fat mass, accompanied by reduced motor activity, lowered thermogenesis in response to a cold challenge, and reduced brown fat uncoupling protein mRNA. However, there was no effect of insulin treatment on total food intake nor on hypothalamic neuropeptide Y or proopiomelanocortin mRNA expression, and insulin-treated animals did not become insulin-resistant. Our results suggest that repeated iatrogenic hypoglycemia leads to weight gain, and that such weight gain is associated with a multifaceted deficit in metabolic regulation rather than to a chronic increase in caloric intake.


Assuntos
Hipoglicemia/induzido quimicamente , Hipoglicemia/complicações , Insulina/efeitos adversos , Obesidade/etiologia , Aumento de Peso/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Hiperfagia/complicações , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Insulina/administração & dosagem , Resistência à Insulina/fisiologia , Masculino , Obesidade/induzido quimicamente , Obesidade/patologia , Periodicidade , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Fatores de Tempo
6.
Am J Physiol Regul Integr Comp Physiol ; 305(11): R1337-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089383

RESUMO

Orexin/hypocretin terminals innervate noradrenergic locus coeruleus (LC) neurons that project to the prefrontral cortex, which may influence spontaneous physical activity (SPA) and energy balance. Obesity-resistant (OR) rats have higher orexin receptors (OXR) mRNA in the LC and other brain regions, as well as lower adiposity compared with obese rats. These findings led us to hypothesize that orexin activity in the LC is relevant for the OR phenotype. We compared OR rats to Sprague-Dawley rats. We predicted that: 1) brain OXR expression pattern is sufficient to differentiate OR from non-bred Sprague-Dawley rats; 2) nonresting energy expenditure (NREE) and orexin A (OXA)-stimulated SPA after injection in LC would be greater in OR rats; and 3) the effect of OXA on SPA would be greater than its effect on feeding. OXR mRNA from 11 brain sites and the SPA and feeding responses to OXA in the LC were determined. Body composition, basal SPA, and EE were determined. Principal component analysis of the OXR expression pattern differentiates OR and Sprague-Dawley rats and suggests the OXR mRNA in the LC is important in defining the OR phenotype. Compared with Sprague-Dawley rats, OR rats had greater SPA and NREE and lower resting EE and adiposity. SPA responsivity to OXA in the LC was greater in OR rats compared with Sprague-Dawley rats. OXA in the LC did not stimulate feeding in OR or Sprague-Dawley rats. These data suggest that the LC is a prominent site modulating OXA-stimulated SPA, which promotes lower adiposity and higher nonresting EE.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Locus Cerúleo/metabolismo , Atividade Motora/fisiologia , Neuropeptídeos/metabolismo , Obesidade/metabolismo , Adiposidade/fisiologia , Animais , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Masculino , Orexinas , Fenótipo , Ratos , Ratos Sprague-Dawley
7.
Neurosci Lett ; 792: 136959, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370954

RESUMO

Sleep disruption (SD) promotes stress which may mediate the effect of SD induced by noise on bodyweight gain and food intake. We determined if the change in bodyweight during SD caused by noise was driven by stress (assessed by corticosterone) and whether the effects of noise on SD, stress and bodyweight were specific to the method of SD or a consequence of SD per se. We isolated stress from SD due to noise by exposing rats to noise during the darkphase to test whether darkphase noise stimulated weight gain, stress and food intake. Male Sprague-Dawley rats slept undisturbed, were exposed to noise during both circadian phases (lightphase vs darkphase) and lightphase gentle handling. Bodyweight, food intake, physical activity, vigilance states, and plasma corticosterone were determined. Darkphase noise did not affect vigilance states. Unlike lightphase noise, darkphase noise and lightphase gentle handling did not stimulate weight gain or food intake. Only gentle handling significantly increased corticosterone levels. Noise during the lightphase increasesed weight gain and food intake by causing SD and these effects were not driven by stress as assessed by corticosterone. These results may have significant implications for developing translational models of insomnia-induced obesity in humans.


Assuntos
Corticosterona , Distúrbios do Início e da Manutenção do Sono , Humanos , Ratos , Animais , Masculino , Privação do Sono , Ratos Sprague-Dawley , Sono , Aumento de Peso , Peso Corporal
9.
Front Endocrinol (Lausanne) ; 14: 1164047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293487

RESUMO

Introduction: The modern food environment facilitates excessive calorie intake, a major driver of obesity. Glucagon-like peptide 1 (GLP1) is a neuroendocrine peptide that has been the basis for developing new pharmacotherapies against obesity. The GLP1 receptor (GLP1R) is expressed in central and peripheral tissues, and activation of GLP1R reduces food intake, increases the expression of thermogenic proteins in brown adipose tissue (BAT), and enhances lipolysis in white adipose tissue (WAT). Obesity decreases the efficiency of GLP1R agonists in reducing food intake and body weight. Still, whether palatable food intake before or during the early development of obesity reduces the effects of GLP1R agonists on food intake and adipose tissue metabolism remains undetermined. Further, whether GLP1R expressed in WAT contributes to these effects is unclear. Methods: Food intake, expression of thermogenic BAT proteins, and WAT lipolysis were measured after central or peripheral administration of Exendin-4 (EX4), a GLP1R agonist, to mice under intermittent-short exposure to CAF diet (3 h/d for 8 days) or a longer-continuous exposure to CAF diet (24 h/d for 15 days). Ex-vivo lipolysis was measured after EX4 exposure to WAT samples from mice fed CAF or control diet for 12 weeks. . Results: During intermittent-short exposure to CAF diet (3 h/d for 8 days), third ventricle injection (ICV) and intra-peritoneal administration of EX4 reduced palatable food intake. Yet, during a longer-continuous exposure to CAF diet (24 h/d for 15 days), only ICV EX4 administration reduced food intake and body weight. However, this exposure to CAF diet blocked the increase in uncoupling protein 1 (UCP1) caused by ICV EX4 administration in mice fed control diet. Finally, GLP1R expression in WAT was minimal, and EX4 failed to increase lipolysis ex-vivo in WAT tissue samples from mice fed CAF or control diet for 12 weeks. . Discussion: Exposure to a CAF diet during the early stages of obesity reduces the effects of peripheral and central GLP1R agonists, and WAT does not express a functional GLP1 receptor. These data support that exposure to the obesogenic food environment, without the development or manifestation of obesity, can alter the response to GLP1R agonists. .


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Lipólise , Camundongos , Animais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Dieta , Obesidade/etiologia , Obesidade/metabolismo , Exenatida/farmacologia , Exenatida/metabolismo , Peso Corporal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Tecido Adiposo Branco/metabolismo , Ingestão de Alimentos
10.
Am J Physiol Endocrinol Metab ; 303(7): E865-74, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22829584

RESUMO

There is significant variability in diet-induced obesity (DIO) among humans and rodents, which has been associated with differences in intrinsic spontaneous physical activity (SPA). The orexin neuropeptides positively modulate SPA through multiple brain sites, but the effects of DIO on orexin's activity are not well understood. In this study, we tested the hypothesis that DIO sensitivity is mediated by decreased SPA and changes in the function of the orexins. As a DIO model, we used male Sprague-Dawley rats fed a high-fat (HF; 45% kcal from fat) or a low-fat (LF; 10% kcal from fat) diet for 10 wk. We measured SPA before and after HF or LF feeding and expression of orexin receptors by real-time PCR after dietary treatments. We tested DIO effects on orexin signaling by measuring SPA after injection of orexin A in the rostral lateral hypothalamus (RLH) before and after 10 wk of HF feeding. Finally, we tested whether daily orexin A RLH injections prevent DIO caused by HF feeding. Our results show that resistance to DIO is associated with an increase in SPA, SPA after injection of orexin A in RLH, and orexin receptor expression in sites that mediate orexin's effect on SPA, including RLH. We show that daily injections of orexin peptide in RLH prevent DIO without altering food intake. We estimate that the energetic cost of SPA after orexin A RLH injection accounts for approximately 61% of the extra caloric intake associated with HF intake, suggesting additional effects of orexins. In summary, our results suggest that variability in DIO sensitivity is mediated through adaptations in the activity of the orexin peptides and their receptors.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Atividade Motora , Neuropeptídeos/metabolismo , Obesidade/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Animais , Dieta com Restrição de Gorduras , Ingestão de Alimentos/efeitos dos fármacos , Região Hipotalâmica Lateral/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Masculino , Neuropeptídeos/administração & dosagem , Obesidade/genética , Receptores de Orexina , Orexinas , Ratos , Ratos Sprague-Dawley
11.
Handb Exp Pharmacol ; (209): 77-109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22249811

RESUMO

In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais , Animais , Fármacos Antiobesidade/farmacologia , Regulação do Apetite , Nível de Alerta , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar , Humanos , Hipotálamo/efeitos dos fármacos , Atividade Motora , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 105(23): 8148-53, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18523006

RESUMO

G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels mediate the inhibitory effects of many neurotransmitters on excitable cells. Four Girk genes have been identified (Girk1-4). Whereas GIRK4 is associated with the cardiac GIRK channel, Girk4 expression has been detected in a few neuron populations. Here, we used a transgenic mouse expressing enhanced green fluorescent protein (EGFP) under the control of the Girk4 gene promoter to clarify the expression pattern of Girk4 in the brain. Although small subsets of EGFP-positive neurons were evident in some areas, prominent labeling was seen in the hypothalamus. EGFP expression was most pronounced in the ventromedial, paraventricular, and arcuate nuclei, neuron populations implicated in energy homeostasis. Consistent with a contribution of GIRK4-containing channels to energy balance, Girk4 knockout -/- mice were predisposed to late-onset obesity. By 9 months, Girk4-/- mice were approximately 25% heavier than wild-type controls, a difference attributed to greater body fat. Before the development of overweight, Girk4-/- mice exhibited a tendency toward greater food intake and an increased propensity to work for food in an operant task. Girk4-/- mice also exhibited reduced net energy expenditure, despite displaying elevated resting heart rates and core body temperatures. These data implicate GIRK4-containing channels in signaling crucial to energy homeostasis and body weight.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/deficiência , Obesidade/metabolismo , Idade de Início , Animais , Temperatura Corporal , Peso Corporal , Condicionamento Operante , Suscetibilidade a Doenças , Metabolismo Energético , Comportamento Alimentar/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Frequência Cardíaca , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Proteínas Recombinantes de Fusão/metabolismo , Aumento de Peso
13.
Obesity (Silver Spring) ; 25(1): 141-146, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896948

RESUMO

OBJECTIVE: Chronic partial sleep deprivation (SD) by environmental noise exposure increases weight gain and feeding in rodents, which contrasts weight loss after acute SD by physical methods. This study tested whether acute environmental noise exposure reduced sleep and its effect on weight gain, food intake, physical activity, and energy expenditure (EE). It was hypothesized that acute exposure would (1) increase weight gain and feeding and (2) reduce sleep, physical activity, and EE (total and individual components); and (3) behavioral changes would persist throughout recovery from SD. METHODS: Three-month old male Sprague-Dawley rats slept ad libitum, were noise exposed (12-h light cycle), and allowed to recover (36 h). Weight gain, food intake, sleep/wake, physical activity, and EE were measured. RESULTS: Acute environmental noise exposure had no effect on feeding, increased weight gain (P < 0.01), and reduced sleep (P < 0.02), physical activity (P < 0.03), total EE (P < 0.05), and several components (P < 0.05). Reductions in EE and physical activity persisted during recovery. CONCLUSIONS: Reductions in EE during sleep, rest, and physical activity reduce total EE and contribute to weight gain during acute SD and recovery from SD. These data emphasize the importance of increasing physical activity after SD to prevent obesity.


Assuntos
Metabolismo Energético , Ruído/efeitos adversos , Obesidade/fisiopatologia , Privação do Sono/fisiopatologia , Aumento de Peso , Animais , Masculino , Obesidade/etiologia , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley , Sono , Privação do Sono/etiologia
14.
Obesity (Silver Spring) ; 25(10): 1716-1722, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815952

RESUMO

OBJECTIVE: Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. METHODS: Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. RESULTS: Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. CONCLUSIONS: Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain.


Assuntos
Manutenção do Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Orexinas/metabolismo , Condicionamento Físico Animal/fisiologia , Privação do Sono/complicações , Animais , Peso Corporal , Masculino , Ratos , Ratos Sprague-Dawley , Privação do Sono/fisiopatologia
15.
Obesity (Silver Spring) ; 25(11): 1844-1851, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29086500

RESUMO

OBJECTIVE: The obesogenic food environment facilitates access to multiple palatable foods. Exendin-4 (EX4) is a glucagon-like peptide 1 receptor (GLP1R) agonist that inhibits food intake and has been proposed as an obesity therapy. This study tested whether the composition of the food environment and experience with palatable foods modulate the effects of EX4 on food intake and reward. METHODS: Mice fed a cafeteria (CAF) or control diet were tested for the anorectic effects of EX4 when simultaneously offered foods of varying individual preference and in a conditioned place preference (CPP) test for chocolate. Plasma glucagon-like peptide 1 (GLP1) and hypothalamic GLP1R mRNA were analyzed post mortem. RESULTS: Mice fed a CAF diet developed individual food preference patterns. Offering mice either novel or highly preferred foods decreased the potency of EX4 to inhibit food intake compared to low preference foods or chow. Compared to the control diet, CAF diet intake blocked the decrease in chocolate CPP caused by EX4 and decreased the expression of hypothalamic GLP1R mRNA without altering the plasma GLP1 concentration. CONCLUSIONS: The composition of the food environment, food preference, and experience modulate the ability of EX4 to inhibit food intake and reward. These data highlight the significance of modeling the complexity of the human food environment in preclinical obesity studies.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hipoglicemiantes/uso terapêutico , Peptídeos/uso terapêutico , Recompensa , Peçonhas/uso terapêutico , Animais , Exenatida , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Peçonhas/farmacologia
16.
Curr Obes Rep ; 6(4): 362-370, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29101738

RESUMO

PURPOSE OF REVIEW: Spontaneous physical activity (SPA) is a physical activity not motivated by a rewarding goal, such as that associated with food-seeking or wheel-running behavior. SPA is often thought of as only "fidgeting," but that is a mischaracterization, since fidgety behavior can be linked to stereotypies in neurodegenerative disease and other movement disorders. Instead, SPA should be thought of as all physical activity behavior that emanates from an unconscious drive for movement. RECENT FINDINGS: An example of this may be restless behavior, which can include fidgeting and gesticulating, frequent sit-to-stand movement, and more time spent standing and moving. All physical activity burns calories, and as such, SPA could be manipulated as a means to burn calories, and defend against weight gain and reduce excess adiposity. In this review, we discuss human and animal literature on the use of SPA in reducing weight gain, the neuromodulators that could be targeted to this end, and future directions in this field.


Assuntos
Encéfalo/fisiopatologia , Metabolismo Energético , Exercício Físico , Atividade Motora , Obesidade/prevenção & controle , Agitação Psicomotora/fisiopatologia , Adiposidade , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Neurotransmissores/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Fatores de Proteção , Agitação Psicomotora/metabolismo , Agitação Psicomotora/psicologia , Fatores de Risco , Transdução de Sinais , Aumento de Peso
17.
Curr Obes Rep ; 6(4): 397-404, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29181707

RESUMO

PURPOSE OF REVIEW: The growing prevalence of obesity, inadequate sleep and sleep disorders together with the negative impact of lack of sleep on overall health highlights the need for therapies targeted towards weight gain due to sleep loss. RECENT FINDINGS: Sex disparities in obesity and sleep disorders are present; yet, the role of sex is inadequately addressed and thus it is unclear whether sensitivity to sleep disruption differs between men and women. Like sex, environmental factors contribute to the development of obesity and poor sleep. The obesogenic environment is characterized by easy access to palatable foods and a low demand for energy expenditure in daily activities. These and other environmental factors are discussed, as they drive altered sleep or their interaction with food choice and intake can promote obesity. We discuss data that suggest differences in sleep patterns and responses to sleep disruption influence sex disparities in weight gain, and that enviromental disturbances alter sleep and interact with features of the obesogenic environment that together promote obesity.


Assuntos
Encéfalo/fisiopatologia , Meio Ambiente , Obesidade/epidemiologia , Transtornos do Sono-Vigília/epidemiologia , Sono , Aumento de Peso , Animais , Encéfalo/metabolismo , Estrogênios/metabolismo , Comportamento Alimentar , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Modelos Animais , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Prevalência , Fatores de Risco , Fatores Sexuais , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/fisiopatologia , Transtornos do Sono-Vigília/psicologia
18.
Front Nutr ; 3: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870735

RESUMO

BACKGROUND: Animal welfare and accurate data collection are equally important in rodent research. Housing influences study outcomes and can challenge studies that monitor feeding, so housing choice needs to be evidence-based. The goal of these studies was to (1) compare established measures of well-being between rodents housed in wire grid-bottom floors with a resting platform compared to solid-bottom floors with bedding and (2) determine whether presence of a chewable device (Nylabone) affects orexin-A-induced hyperphagia. METHODS: Rodents were crossed over to the alternate housing twice after 2-week periods. Time required to complete food intake measurements was recorded as an indicator of feasibility. Food intake stimulated by orexin-A was compared with and without the Nylabone. Blood corticosterone and hypothalamic BDNF were assessed. RESULTS: Housing had no effect on growth, energy expenditure, corticosterone, hypothalamic BDNF, behavior, and anxiety measures. Food intake was disrupted after housing cross-over. Time required to complete food intake measurements was significantly higher for solid-bottom bedded cages. The Nylabone had no effect on orexin-A-stimulated feeding. CONCLUSION: Well-being is not significantly different between rodents housed on grid-bottom floors and those in solid-bottom-bedded cages based on overall growth and feeding but alternating between housing confounds measures of feeding.

19.
Neurosci Lett ; 383(1-2): 99-104, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15936519

RESUMO

Understanding the mechanism of energy flux may be critical for explaining how obesity has emerged as a public health epidemic. It is known that changes in caloric intake predictably alter physical activity levels (PA) in mammals. Here, our goal was to test the hypothesis that fasting induces a biphasic pattern of change in PA by measuring PA before and after long-term food deprivation in zebrafish. Compared to control-fed fish, food-deprived fish showed a significant increase in PA levels during the first 2 days of food deprivation. Subsequently, however, fasted fish showed a significant chronic decrease in PA compared to fish fed at weight-maintenance levels. These data are comparable to those seen with mammals, which also show a biphasic response of PA to caloric restriction. In a separate group of fish, long-term food deprivation, associated with decreases in PA, induced a significant increase in brain preproorexin mRNA levels compared to fed controls. No change in orexin mRNA was seen after 2 days of food deprivation. The finding that orexin mRNA expression is altered only after long-term starvation suggests that orexin may be coupled with the changes in PA seen at this time. Thus, the association between negative energy balance and reductions in PA occurs across genera in biology and is associated with predictable neurological changes in brain gene expression.


Assuntos
Comportamento Animal/fisiologia , Restrição Calórica , Atividade Motora/fisiologia , Animais , Northern Blotting , Peso Corporal/fisiologia , Encéfalo/metabolismo , Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Orexinas , RNA Mensageiro/biossíntese , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Inanição/metabolismo , Fatores de Tempo , Peixe-Zebra
20.
Sleep ; 38(9): 1361-70, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25845696

RESUMO

STUDY OBJECTIVES: The ventrolateral preoptic area (VLPO) and the orexin/hypocretin neuronal system are key regulators of sleep onset, transitions between vigilance states, and energy homeostasis. Reciprocal projections exist between the VLPO and orexin/hypocretin neurons. Although the importance of the VLPO to sleep regulation is clear, it is unknown whether VLPO neurons are involved in energy balance. The purpose of these studies was to determine if the VLPO is a site of action for orexin-A, and which orexin receptor subtype(s) would mediate these effects of orexin-A. We hypothesized that orexin-A in the VLPO modulates behaviors (sleep and wakefulness, feeding, spontaneous physical activity [SPA]) to increase energy expenditure. DESIGN AND MEASUREMENTS: Sleep, wakefulness, SPA, feeding, and energy expenditure were determined after orexin-A microinjection in the VLPO of male Sprague-Dawley rats with unilateral cannulae targeting the VLPO. We also tested whether pretreatment with a dual orexin receptor antagonist (DORA, TCS-1102) or an OX2R antagonist (JNJ-10397049) blocked the effects of orexin-A on the sleep/wake cycle or SPA, respectively. RESULTS: Orexin-A injected into the VLPO significantly increased wakefulness, SPA, and energy expenditure (SPA-induced and total) and reduced NREM sleep and REM sleep with no effect on food intake. Pretreatment with DORA blocked the increase in wakefulness and the reduction in NREM sleep elicited by orexin-A, and the OX2R antagonist reduced SPA stimulated by orexin-A. CONCLUSIONS: These data show the ventrolateral preoptic area is a site of action for orexin-A, which may promote negative energy balance by modulating sleep/wakefulness and stimulating spontaneous physical activity and energy expenditure.


Assuntos
Metabolismo Energético/fisiologia , Orexinas/metabolismo , Área Pré-Óptica/metabolismo , Vigília/fisiologia , Animais , Atenção/efeitos dos fármacos , Atenção/fisiologia , Dioxanos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/metabolismo , Compostos de Fenilureia/farmacologia , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia , Privação do Sono/fisiopatologia , Fatores de Tempo , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA