Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Today Bio ; 18: 100525, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36619201

RESUMO

Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.

2.
Int J Pharm ; 556: 125-135, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30543891

RESUMO

Olanzapine (OLZ), a drug for the treatment of schizophrenia, presents in more than 60 crystal forms. Polymorphs I, II and III were reported, however, the preparation conditions for pure II and III have not been reported. Polymorph IV was reported but this form is actually polymorph II described at different temperature. The diversity of solid forms of OLZ, the change in the nomenclature found in the literature and the presence of polymorphic mixture in samples, increase the difficulty for a correct solid state characterization. Therefore, the goal was the polymorphic identification of three OLZ raw materials, highlighting the limitation of conventional techniques (typically used in analytical control) and the necessity to use a combination of advanced ones to solve this challenge. The samples were studied by conventional techniques such as powder X-ray diffraction, thermoanalytical techniques, infrared spectroscopy. In apart from that, synchrotron powder X-ray diffraction (SPXRD) and solid state nuclear magnetic resonance (ss-NMR) were used. All samples were in accordance with the pharmacopoeia criteria. However, the conventional techniques were not specific for the complete polymorphic identification. Therefore, a combination of advanced techniques (SPXRD and ss-NMR) was necessary to identify the mixture of polymorphs (I, II and III) in all samples.


Assuntos
Antipsicóticos/química , Espectroscopia de Ressonância Magnética/métodos , Olanzapina/química , Difração de Raios X/métodos , Cristalização , Espectrofotometria Infravermelho , Síncrotrons , Tecnologia Farmacêutica/métodos
3.
Neurochem Int ; 50(3): 564-70, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17197055

RESUMO

GHB is a naturally occurring compound in the central nervous system (CNS) whose tissue concentration are highly increased during drug abuse and in the inherited deficiency of succinic semialdehyde dehydrogenase (SSADH) activity. SSADH deficiency is a neurometabolic-inherited disorder of the degradation pathway of gamma-aminobutyric acid (GABA). It is biochemically characterized by increased concentrations of gamma-hydroxybutyric acid (GHB) in tissues, cerebrospinal fluid (CSF), blood and urine of affected patients. Clinical manifestations are variable, ranging from mild retardation of mental, motor, and language development to more severe neurological symptoms, such as hypotonia, ataxia and seizures, whose underlying mechanisms are practically unknown. In the present study, the in vitro and in vivo effects of GHB was investigated on some parameters of oxidative stress, such as chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), as well as the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in homogenates from cerebral cortex of 15-day-old Wistar rats. In vitro, GHB significantly increased chemiluminescence and TBA-RS levels, while TRAP and TAR measurements were markedly diminished. In contrast, the activities of the antioxidant enzymes SOD, CAT and GPX were not altered by GHB in vitro. Acute administration of GHB provoked a significant enhance of TBA-RS levels and a decrease of TRAP and TAR measurements. These results indicate that GHB induces oxidative stress by stimulating lipid peroxidation and decreasing the non-enzymatic antioxidant defenses in cerebral cortex of young rats. If these effects also occur in humans, it is possible that they might contribute to the brain damage found in SSADH-deficient patients and possibly in individuals who consume GHB or its prodrug gamma-butyrolactone.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Estresse Oxidativo , Ácido gama-Aminobutírico/farmacologia , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Int J Dev Neurosci ; 21(6): 327-32, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12927581

RESUMO

Maple syrup urine disease (MSUD) is an inherited disorder caused by deficiency of branched-chain L-2-keto acid dehydrogenase complex activity. Affected patients present severe brain dysfunction manifested as convulsions, coma, psychomotor delay and mental retardation. However, the underlying mechanisms of these neurological findings are virtually unknown. In this study, we tested the in vitro effect of L-leucine, L-isoleucine and L-valine, the amino acids accumulating in MSUD, on the lipid peroxidation parameters chemiluminescence and thiobarbituric acid-reactive substances (TBA-RS), as well as on total radical-trapping antioxidant potential (TRAP) and total antioxidant reactivity (TAR) in cerebral cortex from 30-day-old rats. L-Leucine significantly increased chemiluminescence and TBA-RS measurements and markedly decreased TRAP and TAR values. L-Isoleucine increased chemiluminescence and decreased TRAP measurements, but TAR and TBA-RS levels were not altered by the amino acid. Finally, TRAP measurement was diminished by L-valine. The results indicate a stimulation of lipid peroxidation and a reduction of brain capacity to efficiently modulate the damage associated with an increased production of free radicals by the branched-chain amino acids (BCAAs) accumulated in MSUD. It is therefore tempting to speculate that oxidative stress may be implicated in the brain damage found in MSUD patients.


Assuntos
Aminoácidos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Córtex Cerebral/patologia , Técnicas de Cultura , Relação Dose-Resposta a Droga , Radicais Livres/metabolismo , Isoleucina/metabolismo , Isoleucina/farmacologia , Leucina/metabolismo , Leucina/farmacologia , Masculino , Ratos , Ratos Wistar , Valina/metabolismo , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA