Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Physiol ; 188(4): 1866-1886, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850950

RESUMO

Starch branching enzymes (SBEs) are one of the major classes of enzymes that catalyze starch biosynthesis in plants. Here, we utilized the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene editing system to investigate the effects of SBE mutation on starch structure and turnover in the oilseed crop Brassica napus. Multiple single-guide RNA (sgRNA) expression cassettes were assembled into a binary vector and two rounds of transformation were employed to edit all six BnaSBE genes. All mutations were heterozygous monoallelic or biallelic, and no chimeric mutations were detected from a total of 216 editing events. Previously unannotated gene duplication events associated with two BnaSBE genes were characterized through analysis of DNA sequencing chromatograms, reflecting the complexity of genetic information in B. napus. Five Cas9-free homozygous mutant lines carrying two to six mutations of BnaSBE were obtained, allowing us to compare the effect of editing different BnaSBE isoforms. We also found that in the sextuple sbe mutant, although indels were introduced at the genomic DNA level, an alternate transcript of one BnaSBE2.1 gene bypassed the indel-induced frame shift and was translated to a modified full-length protein. Subsequent analyses showed that the sextuple mutant possesses much lower SBE enzyme activity and starch branching frequency, higher starch-bound phosphate content, and altered pattern of amylopectin chain length distribution relative to wild-type (WT) plants. In the sextuple mutant, irregular starch granules and a slower rate of starch degradation during darkness were observed in rosette leaves. At the pod-filling stage, the sextuple mutant was distinguishable from WT plants by its thick main stem. This work demonstrates the applicability of the CRISPR-Cas9 system for the study of multi-gene families and for investigation of gene-dosage effects in the oil crop B. napus. It also highlights the need for rigorous analysis of CRISPR-Cas9-mutated plants, particularly with higher levels of ploidy, to ensure detection of gene duplications.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Brassica napus , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Brassica napus/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Amido
2.
Plant J ; 105(4): 1098-1112, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232552

RESUMO

Starch synthesis is an elaborate process employing several isoforms of starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic enzymes can form heteromeric complexes whose assembly is controlled by protein phosphorylation. Previous studies suggested that SSIIa forms a trimeric complex with SBEIIb, SSI, in which SBEIIb is phosphorylated. This study investigates the post-translational modification of SSIIa, and its interactions with SSI and SBEIIb in maize amyloplast stroma. SSIIa, immunopurified and shown to be free from other soluble starch synthases, was shown to be readily phosphorylated, affecting Vmax but with minor effects on substrate Kd and Km values, resulting in a 12-fold increase in activity compared with the dephosphorylated enzyme. This ATP-dependent stimulation of activity was associated with interaction with SBEIIb, suggesting that the availability of glucan branching limits SSIIa and is enhanced by physical interaction of the two enzymes. Immunoblotting of maize amyloplast extracts following non-denaturing polyacrylamide gel electrophoresis identified multiple bands of SSIIa, the electrophoretic mobilities of which were markedly altered by conditions that affected protein phosphorylation, including protein kinase inhibitors. Separation of heteromeric enzyme complexes by GPC, following alteration of protein phosphorylation states, indicated that such complexes are stable and may partition into larger and smaller complexes. The results suggest a dual role for protein phosphorylation in promoting association and dissociation of SSIIa-containing heteromeric enzyme complexes in the maize amyloplast stroma, providing new insights into the regulation of starch biosynthesis in plants.


Assuntos
Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Zea mays/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Endosperma/enzimologia , Glucanos/metabolismo , Imunoprecipitação , Fosforilação , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/fisiologia , Plastídeos/metabolismo , Amido/metabolismo , Sintase do Amido/isolamento & purificação , Sintase do Amido/fisiologia , Zea mays/enzimologia
3.
J Exp Bot ; 71(3): 1010-1028, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31624846

RESUMO

The sucrose non-fermenting-1-related protein kinase 1 (SnRK1) is a highly conserved heterotrimeric protein kinase in plants. It possesses a catalytic subunit (α) and two regulatory subunits (ß and γ). The effects of altered expression of AKINß1 on carbohydrate metabolism and gene expression in leaves were investigated in an Arabidopsis T-DNA insertion mutant. The contents of key intermediates in the tricarboxylic acid (TCA) cycle of the mutant leaves were markedly reduced throughout the diurnal cycle, coupled with a decrease in measurable respiration rate. Compared with the wild type, 2485 genes and 188 genes were differentially expressed in leaves of the akinß1 mutant in response to light and darkness, respectively. Among these, several genes exhibited very substantial decreases in expression. Notably, expression of particular isoforms of multigene families involved in malate and lipid metabolism and nitrate uptake showed decreases of 40- to 240-fold during the light period, but not during darkness. The subcellular localization of AKINß1 and the regulatory function of N-myristoylation for this localization were investigated, showing that AKINß1 localizes to the Golgi. A model is hypothesized to explain the effects of AKINß1 on metabolism and gene expression in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Transporte/fisiologia , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Metabolismo dos Carboidratos , Respiração Celular , Complexo de Golgi/metabolismo , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977627

RESUMO

Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.


Assuntos
Amilose/biossíntese , Metabolismo dos Carboidratos/fisiologia , Endosperma/metabolismo , Configuração de Carboidratos
5.
J Exp Bot ; 68(16): 4433-4453, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981786

RESUMO

Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.


Assuntos
Carbono/metabolismo , Plantas/metabolismo , Amido/química , Amido/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Desenvolvimento Vegetal , Sementes/metabolismo , Sacarose/metabolismo
6.
Plant Biotechnol J ; 14(3): 976-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26285603

RESUMO

We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Biomassa , Óleos de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Amido/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Cloroplastos/enzimologia , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/metabolismo , Transformação Genética , Transgenes , Zea mays/metabolismo
7.
Plant Cell Environ ; 39(7): 1432-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26715025

RESUMO

Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 → 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Arabidopsis/metabolismo , Glucanos/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Arabidopsis/genética , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glucanos/ultraestrutura , Plantas Geneticamente Modificadas/genética
8.
J Biol Chem ; 289(13): 9233-46, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550386

RESUMO

Starch branching enzyme IIb (SBEIIb) plays a crucial role in amylopectin biosynthesis in maize endosperm by defining the structural and functional properties of storage starch and is regulated by protein phosphorylation. Native and recombinant maize SBEIIb were used as substrates for amyloplast protein kinases to identify phosphorylation sites on the protein. A multidisciplinary approach involving bioinformatics, site-directed mutagenesis, and mass spectrometry identified three phosphorylation sites at Ser residues: Ser(649), Ser(286), and Ser(297). Two Ca(2+)-dependent protein kinase activities were partially purified from amyloplasts, termed K1, responsible for Ser(649) and Ser(286) phosphorylation, and K2, responsible for Ser(649) and Ser(297) phosphorylation. The Ser(286) and Ser(297) phosphorylation sites are conserved in all plant branching enzymes and are located at opposite openings of the 8-stranded parallel ß-barrel of the active site, which is involved with substrate binding and catalysis. Molecular dynamics simulation analysis indicates that phospho-Ser(297) forms a stable salt bridge with Arg(665), part of a conserved Cys-containing domain in plant branching enzymes. Ser(649) conservation appears confined to the enzyme in cereals and is not universal, and is presumably associated with functions specific to seed storage. The implications of SBEIIb phosphorylation are considered in terms of the role of the enzyme and the importance of starch biosynthesis for yield and biotechnological application.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/biossíntese , Endosperma/enzimologia , Zea mays/enzimologia , Enzima Ramificadora de 1,4-alfa-Glucana/antagonistas & inibidores , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/farmacologia , Fosforilação , Conformação Proteica , Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Exp Bot ; 66(15): 4469-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979995

RESUMO

Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts. This study investigated whether protein-protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200-400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs-BEs, and, among BE isozymes, BEIIa-Pho1, and pullulanase-type DBE-BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch.


Assuntos
Amilopectina/metabolismo , Glucanos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Cromatografia em Gel , Endosperma/enzimologia , Endosperma/genética , Imunoprecipitação , Isoenzimas/genética , Isoenzimas/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas
10.
Theor Appl Genet ; 128(7): 1407-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893467

RESUMO

KEY MESSAGE: The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.


Assuntos
Amilose/química , Endosperma/química , Hordeum/genética , Oryza/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/genética , Enzima Ramificadora de 1,4-alfa-Glucana/química , DNA de Plantas/genética , Endosperma/enzimologia , Pleiotropia Genética , Genótipo , Hordeum/enzimologia , Mutação , Oryza/enzimologia , Fenótipo , Plastídeos/enzimologia , Sintase do Amido/química , Triticum/enzimologia
11.
J Sci Food Agric ; 95(11): 2237-43, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25284759

RESUMO

BACKGROUND: High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. RESULTS: High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. CONCLUSION: Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis.


Assuntos
Amilose/biossíntese , Biomassa , Grão Comestível , Endosperma/enzimologia , Temperatura Alta , Oryza , Sintase do Amido/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo , Metabolismo dos Carboidratos , Grão Comestível/enzimologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Glucosiltransferases/metabolismo , Humanos , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fosforilases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Amido/biossíntese
12.
IUBMB Life ; 66(8): 546-58, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25196474

RESUMO

Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and algae, and their activities play a crucial role in determining the structure and physical properties of starch granules. SBEs generate α-1,6-branch linkages in α-glucans through cleavage of internal α-1,4 bonds and transfer of the released reducing ends to C-6 hydroxyls. Starch biosynthesis in plants and algae requires multiple isoforms of SBEs and is distinct from glycogen biosynthesis in both prokaryotes and eukaryotes which uses a single branching enzyme (BE) isoform. One of the unique characteristics of starch structure is the grouping of α-1,6-branch points in clusters within amylopectin. This is a feature of SBEs and their interplay with other starch biosynthetic enzymes, thus facilitating formation of the compact water-insoluble semicrystalline starch granule. In this respect, the activity of SBE isoforms is pivotal in starch granule assembly. SBEs are structurally related to the α-amylase superfamily of enzymes, sharing three domains of secondary structure with prokaryotic Bes: the central (ß/α)8 -barrel catalytic domain, an NH2 -terminal domain involved in determining the size of α-glucan chain transferred, and the C-terminal domain responsible for catalytic capacity and substrate preference. In addition, SBEs have conserved plant-specific domains, including phosphorylation sites which are thought to be involved in regulating starch metabolism. SBEs form heteromeric protein complexes with other SBE isoforms as well as other enzymes involved in starch synthesis, and assembly of these protein complexes is regulated by protein phosphorylation. Phosphorylated SBEIIb is found in multienzyme complexes with isoforms of glucan-elongating starch synthases, and these protein complexes are implicated in amylopectin cluster formation. This review presents a comparative overview of plant SBEs and includes a review of their properties, structural and functional characteristics, and recent developments on their post-translational regulation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/biossíntese , Evolução Molecular , Complexos Multiproteicos/metabolismo , Plantas/enzimologia , Isoformas de Proteínas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Fosforilação , Filogenia , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Especificidade da Espécie
13.
Biochem J ; 448(3): 373-87, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22963372

RESUMO

The sugary-2 mutation in maize (Zea mays L.) is a result of the loss of catalytic activity of the endosperm-specific SS (starch synthase) IIa isoform causing major alterations to amylopectin architecture. The present study reports a biochemical and molecular analysis of an allelic variant of the sugary-2 mutation expressing a catalytically inactive form of SSIIa and sheds new light on its central role in protein-protein interactions and determination of the starch granule proteome. The mutant SSIIa revealed two amino acid substitutions, one being a highly conserved residue (Gly522→Arg) responsible for the loss of catalytic activity and the inability of the mutant SSIIa to bind to starch. Analysis of protein-protein interactions in sugary-2 amyloplasts revealed the same trimeric assembly of soluble SSI, SSIIa and SBE (starch-branching enzyme) IIb found in wild-type amyloplasts, but with greatly reduced activities of SSI and SBEIIb. Chemical cross-linking studies demonstrated that SSIIa is at the core of the complex, interacting with SSI and SBEIIb, which do not interact directly with each other. The sugary-2 mutant starch granules were devoid of amylopectin-synthesizing enzymes, despite the fact that the respective affinities of SSI and SBEIIb from sugary-2 for amylopectin were the same as observed in wild-type. The data support a model whereby granule-bound proteins involved in amylopectin synthesis are partitioned into the starch granule as a result of their association within protein complexes, and that SSIIa plays a crucial role in trafficking SSI and SBEIIb into the granule matrix.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glucanos/química , Glicogênio Sintase/química , Proteínas de Plantas/química , Sintase do Amido/química , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Alelos , Sequência de Aminoácidos , Amilopectina/química , Glucanos/genética , Glicogênio Sintase/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica/genética , Amido/genética , Sintase do Amido/genética , Zea mays/enzimologia
14.
J Exp Bot ; 63(3): 1167-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22121198

RESUMO

Amylose extender (ae(-)) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae(-) maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein-protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae(-) mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272-Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16-20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-(32)P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the granules is a result of physical association with other enzymes of starch synthesis. In addition, an Mn(2+)-based affinity ligand, specific for phosphoproteins, was used to show that the granule-bound forms of SBEIIb in the wild-type and ae1.2 were phosphorylated, as was the granule-bound form of SBEI found in ae1.2 starch. The data strongly support the hypothesis that the complement of heteromeric complexes of proteins involved in amylopectin synthesis contributes to the fine structure and architecture of the starch granule.


Assuntos
Amilose/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Zea mays/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Alelos , Amilopectina/genética , Amilopectina/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plastídeos/metabolismo , Amido/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Zea mays/genética
15.
Front Genet ; 11: 289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300357

RESUMO

The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in indica accessions compared to japonica lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of japonica-type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules. Shrunken seeds had severely reduced starch content and could not be maintained in succeeding generations. In comparison, the opaque grain morphology was the result of weaker down-regulation of SSIIa which led to an elevated proportion of short-chain amylopectin (DP 6-12) and a concomitant reduction in the proportion of medium-chain amylopectin (DP 13-36). The peak gelatinization temperature of starch and the estimated glycemic score of cooked grain as measured by the starch hydrolysis index were significantly reduced. These results highlight the important role of medium-chain amylopectin in influencing the functional properties of rice grains, including its digestibility. The structural, regulatory and nutritional implications of down-regulated japonica-type SSIIa in rice endosperm are discussed.

16.
J Exp Bot ; 60(15): 4423-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19805395

RESUMO

The amylose extender (ae(-)) mutant of maize lacks starch branching enzyme IIb (SBEIIb) activity, resulting in amylopectin with reduced branch point frequency, and longer glucan chains. Recent studies indicate isozymes of soluble starch synthases form high molecular weight complexes with SBEII isoforms. This study investigated the effect of the loss of SBEIIb activity on interactions between starch biosynthetic enzymes in maize endosperm amyloplasts. Results show distinct patterns of protein-protein interactions in amyloplasts of ae(-) mutants compared with the wild type, suggesting functional complementation for loss of SBEIIb by SBEI, SBEIIa, and SP. Coimmunoprecipitation experiments and affinity chromatography using recombinant proteins showed that, in amyloplasts from normal endosperm, protein-protein interactions involving starch synthase I (SSI), SSIIa, and SBEIIb could be detected. By contrast, in ae(-) amyloplasts, SSI and SSIIa interacted with SBEI, SBEIIa, and SP. All interactions in the wild-type were strongly enhanced by ATP, and broken by alkaline phosphatase, indicating a role for protein phosphorylation in their assembly. Whilst ATP and alkaline phosphatase had no effect on the stability of the protein complexes from ae(-) endosperm, radiolabelling experiments showed SP and SBEI were both phosphorylated within the mutant protein complex. It is proposed that, during amylopectin biosynthesis, SSI and SSIIa form the core of a phosphorylation-dependent glucan-synthesizing protein complex which, in normal endosperm, recruits SBEIIb, but when SBEIIb is absent (ae(-)), recruits SBEI, SBEIIa, and SP. Differences in stromal protein complexes are mirrored in the complement of the starch synthesizing enzymes detected in the starch granules of each genotype, reinforcing the hypothesis that the complexes play a functional role in starch biosynthesis.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilose/biossíntese , Mutação , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Zea mays/enzimologia , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Vias Biossintéticas , Proteínas de Plantas/genética , Plastídeos/genética , Plastídeos/metabolismo , Ligação Proteica , Zea mays/genética , Zea mays/metabolismo
17.
Protoplasma ; 255(6): 1855-1876, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29774409

RESUMO

Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.


Assuntos
Plantas/metabolismo , Plastídeos/metabolismo , Amido/metabolismo , Modelos Biológicos , Fosforilação , Amido/biossíntese , Amido/química
18.
Front Plant Sci ; 9: 1338, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283470

RESUMO

Starch synthase 2 (SS2) is an important enzyme in leaf starch synthesis, elongating intermediate-length glucan chains. Loss of SS2 results in a distorted starch granule phenotype and altered physiochemical properties, highlighting its importance in starch biosynthesis, however, the post-translational regulation of SS2 is poorly understood. In this study, a combination of bioinformatic and in vitro analysis of recombinant SS2 was used to identify and characterize SS2 post-translational regulatory mechanisms. The SS2 N-terminal region, comprising the first 185 amino acids of the mature protein sequence, was shown to be highly variable between species, and was predicted to be intrinsically disordered. Intrinsic disorder in proteins is often correlated with protein phosphorylation and protein-protein interactions. Recombinant Arabidopsis thaliana SS2 formed homodimers that required the N-terminal region, but N-terminal peptides could not form stable homodimers alone. Recombinant SS2 was shown to be phosphorylated by chloroplast protein kinases and recombinant casein kinase II at two N-terminal serine residues (S63, S65), but mutation of these phosphorylation sites (Ser>Ala) revealed that they are not required for homo-dimerization. Heteromeric enzyme complex (HEC) formation between SS2 and SBE2.2 was shown to be ATP-dependent. However, SS2 homo-dimerization and protein phosphorylation are not required for its interaction with SBE2.2, as truncation of the SS2 N-terminus did not disrupt ATP-dependent HEC assembly. SS2 phosphorylation had no affect on its catalytic activity. Intriguingly, the removal of the N-terminal region of SS2 resulted in a 47-fold increase in its activity. As N-terminal truncation disrupted dimerization, this suggests that SS2 is more active when monomeric, and that transitions between oligomeric state may be a mechanism for SS2 regulation.

19.
Plant Sci ; 233: 95-106, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711817

RESUMO

The present study investigated the role of protein phosphorylation, and protein complex formation between key enzymes of amylopectin synthesis, in barley genotypes exhibiting "high amylose" phenotypes. Starch branching enzyme (SBE) down-regulated lines (ΔSBEIIa and ΔSBEIIb), starch synthase (SS)IIa (ssiia(-), sex6) and SSIII (ssiii(-), amo1) mutants were compared to a reference genotype, OAC Baxter. Down-regulation of either SBEIIa or IIb caused pleiotropic effects on SSI and starch phosphorylase (SP) and resulted in formation of novel protein complexes in which the missing SBEII isoform was substituted by SBEI and SP. In the ΔSBEIIb down-regulated line, soluble SP activity was undetectable. Nonetheless, SP was incorporated into a heteromeric protein complex with SBEI and SBEIIa and was readily detected in starch granules. In amo1, unlike other mutants, the data suggest that both SBEIIa and SBEIIb are in a protein complex with SSI and SSIIa. In the sex6 mutant no protein complexes involving SBEIIa or SBEIIb were detected in amyloplasts. Studies with Pro-Q Diamond revealed that GBSS, SSI, SSIIa, SBEIIb and SP are phosphorylated in their granule bound state. Alteration in the granule proteome in ΔSBEIIa and ΔSBEIIb lines, suggests that different protein complexes are involved in the synthesis of A and B granules.


Assuntos
Regulação para Baixo , Hordeum/genética , Proteínas de Plantas/genética , Proteoma , Amido/biossíntese , Hordeum/enzimologia , Microscopia Eletrônica , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Fosforilação , Proteínas de Plantas/metabolismo , Amido/ultraestrutura
20.
Biomed Opt Express ; 6(10): 3694-700, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504621

RESUMO

Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R'SHG ) are obtained using reduced Stokes-Mueller polarimetric microscopy. The maximum R'SHG values occur at moderate moisture indicating the narrowest orientation distribution of nonlinear dipoles from the cylindrical axis of glucan helices. The maximum SHG intensity occurs at the highest moisture and amylopectin content. These results support the hypothesis that SHG is caused by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA