Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Brain ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991041

RESUMO

Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with higher risk of dementia, and, consequently, be not rarely misdiagnosed. In this review, we summarize the state-of-the-art on LBD-AD by discussing the synergistic effects between AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment in LBD-AD and their possible diagnostic and prognostic value. AD pathology can be suspected in vivo by means of CSF, MRI and PET markers, whereas α-synuclein seed amplification assays (SAAs) represent to date the most promising technique to identify Lewy pathology in different biological tissues. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity like in pure AD. The implementation of blood-based biomarkers of AD might allow the fast screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account for the differential diagnosis of dementia syndromes, for the prognostic evaluation on an individual level and for guiding symptomatic and disease-modifying therapies.

2.
Nat Rev Neurol ; 20(6): 337-346, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38724589

RESUMO

The development of biomarkers for Alzheimer disease (AD) has led to the origin of suspected non-AD pathophysiology (SNAP) - a heterogeneous biomarker-based concept that describes individuals with normal amyloid and abnormal tau and/or neurodegeneration biomarker status. In this Review, we describe the origins of the SNAP construct, along with its prevalence, diagnostic and prognostic implications, and underlying neuropathology. As we discuss, SNAP can be operationalized using different biomarker modalities, which could affect prevalence estimates and reported characteristics of SNAP in ways that are not yet fully understood. Moreover, the underlying aetiologies that lead to a SNAP biomarker profile, and whether SNAP is the same in people with and without cognitive impairment, remains unclear. Improved insight into the clinical characteristics and pathophysiology of SNAP is of major importance for research and clinical practice, as well as for trial design to optimize care and treatment of individuals with SNAP.


Assuntos
Biomarcadores , Humanos , Biomarcadores/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/diagnóstico , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Relevância Clínica
3.
Mol Neurodegener ; 19(1): 7, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245794

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mesencéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA