Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 61(24): 2791-2796, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36037062

RESUMO

Vitamin B12 (the cyanated form of cobalamin cofactors) is best known for its essential role in human health. In addition to its function in human metabolism, cobalamin also plays important roles in microbial metabolism and can impact microbial community function. Cobalamin is a member of the structurally diverse family of cofactors known as cobamides that are produced exclusively by certain prokaryotes. Cobamides are considered shared nutrients in microbial communities because the majority of bacteria that possess cobamide-dependent enzymes cannot synthesize cobamides de novo. Furthermore, different microbes have evolved metabolic specificity for particular cobamides, and therefore, the availability of cobamides in the environment is important for cobamide-dependent microbes. Determining the cobamides present in an environment of interest is essential for understanding microbial metabolic interactions. By examining the abundances of different cobamides in diverse environments, including 10 obtained in this study, we find that, contrary to its preeminence in human metabolism, cobalamin is relatively rare in many microbial habitats. Comparison of cobamide profiles of mammalian gastrointestinal samples and wood-feeding insects reveals that host-associated cobamide abundances vary and that fecal cobamide profiles differ from those of their host gastrointestinal tracts. Environmental cobamide profiles obtained from aquatic, soil, and contaminated groundwater samples reveal that the cobamide compositions of environmental samples are highly variable. As the only commercially available cobamide, cobalamin is routinely supplied during microbial culturing efforts. However, these findings suggest that cobamides specific to a given microbiome may yield greater insight into nutrient utilization and physiological processes that occur in these habitats.


Assuntos
Cobamidas , Vitamina B 12 , Animais , Bactérias/metabolismo , Cobamidas/metabolismo , Mamíferos/metabolismo , Vitamina B 12/metabolismo , Corrinoides/química , Corrinoides/metabolismo
2.
Alcohol ; 48(7): 687-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25278255

RESUMO

Maternal ethanol consumption during pregnancy can produce a range of teratogenic outcomes in offspring. The mechanism of ethanol teratogenicity is multi-faceted, but may involve alterations in insulin and insulin-like growth factor (IGF) signaling pathways. These pathways are not only important for metabolism, but are also critically involved in neuronal survival and plasticity, and they can be altered by chronic prenatal ethanol exposure (CPEE). The objective of this study was to test the hypothesis that CPEE alters expression of insulin and IGF signaling molecules in the prefrontal cortex and liver of adult guinea pig offspring. Pregnant Dunkin-Hartley-strain guinea pigs received ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding (nutritional control) throughout gestation. Fasting blood glucose concentration was measured in male and female offspring at postnatal day 150-200, followed by euthanasia, collection of prefrontal cortex and liver, and RNA extraction. IGF-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor substrate (IRS)-1, IRS-2, and insulin receptor (INSR) mRNA expression levels were measured in tissues using quantitative real-time PCR. The mean maternal blood ethanol concentration was 281 ± 15 mg/dL at 1 h after the second divided dose of ethanol on GD 57. CPEE resulted in increased liver weight in adult offspring, but produced no difference in fasting blood glucose concentration compared with nutritional control. In the liver, CPEE decreased mRNA expression of IGF-1, IGF-1R, and IGF-2, and increased IRS-2 mRNA expression in male offspring only compared with nutritional control. Female CPEE offspring had decreased INSR hepatic mRNA expression compared with male CPEE offspring. In the prefrontal cortex, IRS-2 mRNA expression was increased in CPEE offspring compared with nutritional control. The data demonstrate that CPEE alters both central and peripheral expression of insulin and IGF signaling molecules at the mRNA level, which may be related to metabolic dysregulation in adult offspring. Furthermore, altered insulin and IGF signaling may be a mechanism of ethanol neurobehavioral teratogenicity.


Assuntos
Etanol/efeitos adversos , Fator de Crescimento Insulin-Like II/análise , Fator de Crescimento Insulin-Like I/análise , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Receptor IGF Tipo 1/análise , Receptor IGF Tipo 2/análise , Receptor de Insulina/análise , Animais , Animais Recém-Nascidos , Glicemia/análise , Feminino , Cobaias , Fígado/química , Masculino , Córtex Pré-Frontal/química , Gravidez , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA