Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470914

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Assuntos
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , RNA Interferente Pequeno , Variações do Número de Cópias de DNA , Sequências Repetidas Terminais/genética , Filogenia , Evolução Molecular
2.
Nucleic Acids Res ; 49(18): 10431-10447, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551439

RESUMO

Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.


Assuntos
Arabidopsis/genética , Resposta ao Choque Térmico/genética , Retroelementos , Transcriptoma , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/análise , Citidina/análogos & derivados , Citidina/toxicidade , Epigênese Genética , Éxons , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Código das Histonas , Histonas/análise , Fenótipo
3.
New Phytol ; 236(1): 182-194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35715973

RESUMO

Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.


Assuntos
Arabidopsis , Adaptação Fisiológica/genética , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Secas , Evolução Molecular , Temperatura Alta
4.
Nucleic Acids Res ; 47(17): 9037-9052, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31372633

RESUMO

RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV's largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas , Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Inativação Gênica , Genoma de Planta , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/metabolismo , Retroelementos/genética
7.
Environ Sci Technol ; 48(13): 7552-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24869480

RESUMO

Lead (Pb) ranks first among metals with respect to tonnage produced and released into the environment. It is highly toxic and therefore an important pollutant of worldwide concern. Plant Pb uptake, accumulation, and detoxification mobilize Pb into food webs. Still, knowledge about the underlying mechanisms is very limited. This is largely due to serious experimental challenges with respect to Pb availability. In most studies, Pb(II) concentrations in the millimolar range have been used even though the toxicity threshold is in the nanomolar range. We therefore developed a low-phosphate, low-pH assay system that is more realistic with respect to soil solution conditions. In this system the growth of Arabidopsis thaliana seedlings was significantly affected by the addition of only 0.1 µM Pb(NO3)2. Involvement of phytochelatins in the detoxification of Pb(II) could be demonstrated by investigating phytochelatin synthase mutants. They showed a stronger inhibition of root growth and a lack of Pb-activated phytochelatin synthesis. In contrast, other putative Pb hypersensitive mutants were unaffected under these conditions, further supporting the essential role of phytochelatins for Pb detoxification. Our findings demonstrate the need to monitor plant Pb responses at realistic concentrations under controlled conditions and provide a strategy to achieve this.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/metabolismo , Chumbo/farmacocinética , Chumbo/toxicidade , Fitoquelatinas/biossíntese , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Bioensaio , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Inativação Metabólica , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solo/química
8.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38504651

RESUMO

Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.


Assuntos
Brachypodium , Flores , Herança Multifatorial , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Interação Gene-Ambiente , Meio Ambiente , Fenótipo , Locos de Características Quantitativas
9.
Methods Mol Biol ; 2250: 95-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900595

RESUMO

Transposable elements (TEs) are the main component of eukaryotic genomes. Besides their impact on genome size, TEs are also functionally important as they can alter gene expression and influence phenotypic variation. In plants, most top-down studies focus on extremely clear phenotypes such as the shape or the color of individuals and do not explore fully the role of TEs in evolution. Assessing the impact of TEs in a more systematic manner, however, requires identifying active TEs to further study their impact on phenotypes. In this chapter, we describe an in planta approach that consists in activating TEs by interfering with pathways involved in their silencing. It enables to directly investigate the functional impact of single TE families at low cost.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis , Análise de Sequência de DNA/métodos , DNA de Plantas/genética , Epigênese Genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
10.
Acta Biomater ; 104: 241-251, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926333

RESUMO

Molybdenum as a potentially new biodegradable material was investigated. Degradation behavior of commercially high purity molybdenum was observed in simulated physiological salt solutions (Kokubo's SBF with/without TRIS-HCl, Cu2+ addition and 0.9% NaCl solution). Potentiodynamic polarization, immersion mass loss and ion concentration measurements paired with REM/EDX analysis reveal gradual dissolution of molybdenum in the proper order of magnitude for stent application, associated with formation of thin, non-passivating corrosion products. The underlying corrosion mechanism is discussed as well as a comparison to literature data. However, formation of calcium phosphates (CaP) in SBF significantly decreases corrosion rates. In-situ polarization was found to be a potential way for overcoming this problem and simultaneously enhancing corrosion above the benchmark for a degradable stent material. STATEMENT OF SIGNIFICANCE: Biodegradable metals have the potential to overcome severe complications common to orthopedic and cardio-vascular implants. However, the need for a material with moderate and predictable degradation, high strength and toughness as well as MRI suitability must be satisfied. Molybdenum as potential new biodegradable material may just fulfill these requirements. An overall positive picture of molybdenum as an interesting alternative to recently discussed metallic biodegradable materials can be concluded from the herein presented results and from literature data, showing directions for future research on the topic.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Molibdênio/química , Corrosão , Eletroquímica , Concentração de Íons de Hidrogênio , Íons , Espectrometria por Raios X
11.
Genome Biol ; 18(1): 134, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687080

RESUMO

BACKGROUND: Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity. RESULTS: Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity. CONCLUSIONS: We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.


Assuntos
Melhoramento Vegetal , RNA Polimerase II/antagonistas & inibidores , Retroelementos , Arabidopsis/genética , Metilação de DNA , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA