Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Glob Chang Biol ; 28(9): 3066-3082, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170154

RESUMO

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.


Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una observación directa durante muchos años, y estos conjuntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproducción de las plantas de todo el planeta, poniendo a disposición estos datos de libre acceso para la comunidad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales a nivel de población provenientes de 974 especies en 66 países. La mediana de la duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto de series temporales replicadas en gradientes geográficos y climáticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos una aplicación web asociada para la exploración de datos. MASTREE+ proporcionará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la investigación de la ecología y la evolución de las estrategias reproductivas en plantas perennes y el papel de la reproducción vegetal como determinante de la dinámica de ecosistemas.


Assuntos
Ecossistema , Reprodução , Ecologia , Plantas , Sementes/fisiologia
2.
Glob Chang Biol ; 27(9): 1952-1961, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33604979

RESUMO

Climate change is altering patterns of seed production worldwide with consequences for population recruitment and migration potential. For the many species that regenerate through synchronized, quasiperiodic reproductive events termed masting, these changes include decreases in the synchrony and interannual variation in seed production. This breakdown in the occurrence of masting features harms reproduction by decreasing the efficiency of pollination and increasing seed predation. Changes in masting are often paralleled by warming temperatures, but the underlying proximate mechanisms are unknown. We used a unique 39-year study of 139 European beech (Fagus sylvatica) trees that experienced masting breakdown to track the seed developmental cycle and pinpoint phases where weather effects on seed production have changed over time. A cold followed by warm summer led to large coordinated flowering efforts among plants. However, trees failed to respond to the weather signal as summers warmed and the frequency of reproductive cues changed fivefold. Less synchronous flowering resulted in less efficient pollination that further decreased the synchrony of seed maturation. As global temperatures are expected to increase this century, perennial plants that fine-tune their reproductive schedules based on temperature cues may suffer regeneration failures.


Assuntos
Sinais (Psicologia) , Fagus , Polinização , Reprodução , Sementes , Árvores , Tempo (Meteorologia)
3.
J Plant Res ; 134(5): 947-962, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33860903

RESUMO

Causes of secondary sexual dimorphism (SSD) in dioecious plants are very poorly understood, especially in woody plants. SSD is shown mainly in mature plants, but little is known about whether secondary sexual dimorphism can occur in juveniles. It is also assumed that stress conditions intensify differences between the sexes due to the uneven reproductive effort. Therefore, the following research hypotheses were tested: (1) secondary sexual dimorphism will be visible in juveniles; (2) unfavourable soil conditions are the cause of more pronounced differences between the sexes. Rooted shoots of the common yew (Taxus baccata L.) and common juniper (Juniperus communis L.), previously harvested from parental individuals of known sex were used in the study. During two growing seasons vegetation periods and four times a year, comprehensive morphological features of whole plants were measured. Some SSD traits were visible in the analysed juveniles. Contrary to expectations, differences were more pronounced in the fertilized treatment. Both species reacted to fertilization in different ways. Female yew had a clearly higher total plant mass, root mass, and mean root area when fertilized, whereas male juniper had a higher root mass when fertilized. Differences between the sexes independent of the fertilization treatment were seen, which can be interpreted as sexual adaptations to a continued reproduction. Female yews and male junipers made better use of fertile habitats. Our study showed that SSD may be innate, and sexual compensatory mechanisms could generate uneven growth and development of both sexes. Because the SSD pattern was rather different in both species, it was confirmed that SSD is connected with the specific life histories of specific species rather than a universal strategy of dioecious species.


Assuntos
Desenvolvimento Vegetal , Reprodução , Caracteres Sexuais , Ecossistema , Plantas , Estações do Ano , Solo
4.
Ecology ; 98(5): 1473, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28241388

RESUMO

Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability, and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The data set has a total of 1,747 series and 18,348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, gray literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 yr where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behavior. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.


Assuntos
Fagus/fisiologia , Picea/fisiologia , Europa (Continente) , Florestas , Noruega , Árvores
5.
AoB Plants ; 15(5): plad059, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37899977

RESUMO

Due to global climate cooling and aridification since the Paleogene, members of the Neogene flora were extirpated from the Northern Hemisphere or were confined to a few refugial areas. For some species, the final reduction/extinction came in the Pleistocene, but some others have survived climatic transformations up to the present. This has occurred in Castanea sativa, a species of high commercial value in Europe and a significant component of the Caucasian forests' biodiversity. In contrast to the European range, neither the historical biogeography nor the population genetic structure of the species in its isolated Caucasian range has been clarified. Here, based on a survey of 21 natural populations from the Caucasus and a single one from Europe, we provide a likely biogeographic reconstruction and genetic diversity details. By applying Bayesian inference, species distribution modelling and fossil pollen data, we estimated (i) the time of the Caucasian-European divergence during the Middle Pleistocene, (ii) the time of divergence among Caucasian lineages and (iii) outlined the glacial refugia for species. The climate changes related to the Early-Middle Pleistocene Transition are proposed as the major drivers of the intraspecific divergence and European-Caucasian disjunction for the species, while the impact of the last glacial cycle was of marginal importance.

6.
Ecol Evol ; 13(5): e10068, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37214605

RESUMO

The climate drives species distribution and genetic diversity; the latter defines the adaptability of populations and species. The ongoing climate crisis induces tree decline in many regions, compromising the mitigation potential of forests. Scientific-based strategies for prioritizing forest tree populations are critical to managing the impact of climate change. Identifying future climate refugia, which are locations naturally buffering the negative impact of climate change, may facilitate local conservation. In this work, we conducted the populations' prioritization for Castanea sativa (sweet chestnut), a Neogene relict growing in the Caucasus global biodiversity hotspot. We generated genetic and ecological metrics for 21 sites in Georgia and Azerbaijan, which cover the natural range of sweet chestnut across the region. We demonstrated that climate primarily drives the pattern of genetic diversity in C. sativa, proved with a significant isolation-by-environment model. In future, climate change may significantly reorganize the species' genetic diversity, inducing even some genetic loss, especially in the very distinct eastern fringe of the species range in Azerbaijan. Based on our combined approach, we mapped populations suitable for ex situ and in situ conservation, accounting for genetic variability and the location of future climate refugia.

7.
Sci Rep ; 12(1): 17072, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224233

RESUMO

Viscum album L. is a plant of great importance due to its influence on the host trees and, by extension, entire ecosystems. The species is also significant to humans-on the one hand, because of its use in medicine, and on the other, because of the growing threat it poses to the stability of conifer stands. Therefore, it is important to recognize the future range of three mistletoe subspecies (Viscum album subsp. album, V. album subsp. austriacum, and V. album subsp. abietis). Modelling of the potential range of these subspecies was performed using MAXENT software. Locations were collected from literature and databases. A total number of 3335 stands were used. Bioclimatic data for the current conditions and three future scenarios (SSP 1.26, SSP 3.70, SSP 5.85) were downloaded from the CHELSA database. The results confirmed that the temperature is the key variable on the potential range of the analysed subspecies. V. album subsp. abietis is withdrawing from its range according to all scenarios. In the case of V. album subsp. austriacum, a slight range shift is visible. Only the V. album subsp. album will expand non-directionally. The reason is most likely a very large number of host species and greater genetic variability compared to the subspecies found on conifers.


Assuntos
Erva-de-Passarinho , Viscum album , Ecossistema , Europa (Continente) , Humanos , Extratos Vegetais , Temperatura
8.
Ecol Evol ; 12(9): e9320, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188519

RESUMO

Predicting species-level effects of climatic changes requires unraveling the factors affecting the spatial genetic composition. However, disentangling the relative contribution of historical and contemporary drivers is challenging. By applying landscape genetics and species distribution modeling, we investigated processes that shaped the neutral genetic structure of Oriental beech (Fagus orientalis), aiming to assess the potential risks involved due to possible future distribution changes in the species. Using nuclear microsatellites, we analyze 32 natural populations from the Georgia and Azerbaijan (South Caucasus). We found that the species colonization history is the most important driver of the genetic pattern. The detected west-east gradient of genetic differentiation corresponds strictly to the Colchis and Hyrcanian glacial refugia. A significant signal of associations to environmental variables suggests that the distinct genetic composition of the Azerbaijan and Hyrcanian stands might also be structured by the local climate. Oriental beech retains an overall high diversity; however, in the context of projected habitat loss, its genetic resources might be greatly impoverished. The most affected are the Azerbaijan and Hyrcanian populations, for which the detected genetic impoverishment may enhance their vulnerability to environmental change. Given the adaptive potential of range-edge populations, the loss of these populations may ultimately affect the specie's adaptation, and thus the stability and resilience of forest ecosystems in the Caucasus ecoregion. Our study is the first approximation of the potential risks involved, inducing far-reaching conclusions about the need of maintaining the genetic resources of Oriental beech for a species' capacity to cope with environmental change.

9.
Nat Plants ; 6(2): 88-94, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042155

RESUMO

Many plants benefit from synchronous year-to-year variation in seed production, called masting. Masting benefits plants because it increases the efficiency of pollination and satiates predators, which reduces seed loss. Here, using a 39-year-long dataset, we show that climate warming over recent decades has increased seed production of European beech but decreased the year-to-year variability of seed production and the reproductive synchrony among individuals. Consequently, the benefit that the plants gained from masting has declined. While climate warming was associated with increased reproductive effort, we demonstrate that less effective pollination and greater losses of seeds to predators offset any benefits to the plants. This shows that an apparently simple benefit of climate warming unravels because of complex ecological interactions. Our results indicate that in masting systems, the main beneficiaries of climate-driven increases in seed production are seed predators, not plants.


Assuntos
Fagus/fisiologia , Aptidão Genética , Aquecimento Global , Nozes/crescimento & desenvolvimento , Mudança Climática , Inglaterra , Fagus/genética , Fagus/crescimento & desenvolvimento
10.
Curr Biol ; 30(17): 3477-3483.e2, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649915

RESUMO

Climate change is altering patterns of seed production worldwide [1-4], but the potential for evolutionary responses to these changes is poorly understood. Masting (synchronous, annually variable seed production by plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction per surviving offspring [5-7]. Masting is particularly widespread in temperate trees [8, 9] impacting food webs, macronutrient cycling, carbon storage, and human disease risk [10-12], so understanding its response to climate change is important. Here, we analyze inter-individual variability in plant reproductive patterns and two economies of scale-predator satiation and pollination efficiency-and document how natural selection acting upon them favors masting. Four decades of observations for European beech (Fagus sylvatica) show that predator satiation and pollination efficiency select for individuals with higher inter-annual variability of reproduction and higher reproductive synchrony between individuals. This result confirms the long-standing theory that masting, a population-level phenomenon, is generated by selection on individuals. Furthermore, recent climate-driven increases in mean seed production have increased selection pressure from seed predators but not from pollination efficiency. Natural selection is thus acting to restore the fitness benefits of masting, which have previously decreased under a warming climate [13]. However, selection will likely take far longer (centuries) than climate warming (decades), so in the short-term, tree reproduction will be reduced because masting has become less effective at satiating seed predators. Over the long-term, evolutionary responses to climate change could potentially increase inter-annual variability of seed production of masting species.


Assuntos
Evolução Biológica , Mudança Climática , Fagus/crescimento & desenvolvimento , Comportamento Predatório/fisiologia , Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Animais , Europa (Continente) , Fagus/fisiologia , Comportamento Alimentar , Polinização , Reprodução , Dispersão de Sementes , Sementes/fisiologia , Árvores/fisiologia
11.
PLoS One ; 14(12): e0226225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31826015

RESUMO

Horse-chestnut (Aesculus hippocastanum L.) is an endemic and relict species from the Mediterranean biodiversity hotspot and a popular ornamental tree. Knowledge about the evolutionary history of this species remains scarce. Here, we ask what historical and ecological factors shaped the pattern of genetic diversity and differentiation of this species. We genotyped 717 individuals from nine natural populations using microsatellite markers. The influence of distance, topography and habitat variables on spatial genetic structure was tested within the approaches of isolation-by-distance and isolation-by-ecology. Species niche modeling was used to project the species theoretical range through time and space. The species showed high genetic diversity and moderate differentiation for which topography, progressive range contraction through the species' history and long-term persistence in stable climatic refugia are likely responsible. A strong geographic component was revealed among five genetic clusters that are connected with very limited gene flow. The environmental variables were a significant factor in the spatial genetic structure. Modeling results indicated that future reduction of the species range may affect its survival. The possible impact of climate changes and high need of in situ conservation are discussed.


Assuntos
Aesculus/genética , Variação Genética , Aesculus/fisiologia , Teorema de Bayes , Mudança Climática , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Ecossistema , Fluxo Gênico , Genética Populacional , Genótipo , Grécia , Repetições de Microssatélites , Filogeografia , Refúgio de Vida Selvagem
12.
Front Plant Sci ; 9: 742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922316

RESUMO

In dioecious woody plants, females often make a greater reproductive effort than male individuals at the cost of lower growth rate. We hypothesized that a greater reproductive effort of female compared with male Taxus baccata individuals would be associated with lower female photochemical capacity and higher activity of antioxidant enzymes. Differences between the genders would change seasonally and would be more remarkable under nutrient deficiency. Electron transport rate (ETRmax), saturation photosynthetic photon flux corresponding to maximum electron transport rate (PPFsat), quantum yield of PSII photochemistry at PPFsat (ΦPPFsat), and chlorophyll a fluorescence and activity of antioxidant enzymes were determined in needles of T. baccata female and male individuals growing in the experiment with or without fertilization. The effects of seasonal changes and fertilization treatment on photochemical parameters, photosynthetic pigments concentration, and antioxidant enzymes were more pronounced than the effects of between-sexes differences in reproductive efforts. Results showed that photosynthetic capacity expressed as ETRmax and ΦPPFsat and photosynthetic pigments concentrations decreased and non-photochemical quenching of fluorescence (NPQ) increased under nutrient deficiency. Fertilized individuals were less sensitive to photoinhibition than non-fertilized ones. T. baccata female and male individuals did not differ in photochemical capacity, but females showed higher maximum quantum yield of PSII photochemistry (Fv/Fm) than males. The activity of guaiacol peroxidase (POX) was also higher in female than in male needles. We concluded that larger T. baccata female reproductive effort compared with males was not at the cost of photochemical capacity, but to some extent it could be due to between-sexes differences in ability to protect the photosynthetic apparatus against photoinhibition with antioxidants.

13.
Tree Physiol ; 37(6): 744-754, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338975

RESUMO

Interannual variation in radial growth is influenced by a range of physiological processes, including variation in annual reproductive effort, although the importance of reproductive allocation has rarely been quantified. In this study, we use long stand-level records of annual seed production, radial growth (tree ring width) and meteorological conditions to analyse the relative importance of summer drought and reproductive effort in controlling the growth of Fagus sylvatica L., a typical masting species. We show that both summer drought and reproductive effort (masting) influenced growth. Importantly, the effects of summer drought and masting were interactive, with the greatest reductions in growth found in years when high reproductive effort (i.e., mast years) coincided with summer drought. Conversely, mast years that coincided with non-drought summers were associated with little reduction in radial growth, as were drought years that did not coincide with mast years. The results show that the strength of an inferred trade-off between growth and reproduction in this species (the cost of reproduction) is dependent on environmental stress, with a stronger trade-off in years with more stressful growing conditions. These results have widespread implications for understanding interannual variability in growth, and observed relationships between growth and climate.


Assuntos
Secas , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Clima , Reprodução , Estações do Ano , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
14.
Tree Physiol ; 35(3): 319-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25721369

RESUMO

Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for 'carry-over' processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships.


Assuntos
Clima , Fagus/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Secas , Fagus/fisiologia , Reprodução/fisiologia , Estações do Ano , Sementes , Temperatura
15.
Environ Sci Technol ; 43(5): 1310-5, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19350896

RESUMO

There is a shortage of archives of sulfur that can be used to investigate industrial orvolcanic pollution in terrestrial catchments, but the role of S as a nutrient, coupled with sparse published evidence, suggests that trees are promising targets. We focused on two conifer species (Picea abies (L.) Karst and Abies alba Miller) from an Alpine site in NE Italy. Bulk analyses of Abies demonstrate that S concentrations were higher in the second half of the 20th century but with some high outliers possibly reflecting particulate impurities. X-ray synchrotron analyses confirmed the observed time trend, which is similar to that of a nearby stalagmite, and reflects an atmospheric pollution record mediated by storage in the soil and ecosystem. S and P were found to be localized in the inner cell wall (ca. 2 microm wide), local thickenings of which probably account for some outlying high values of S in synchrotron studies. S occurs as a mixture of oxidation states (0 to +0.5, +2, +5, and +6) which are consistent in space and time. The results indicate that wood older than a few years contains archive-quality S but that robust conclusions require multiple replicate analyses.


Assuntos
Meio Ambiente , Enxofre/metabolismo , Síncrotrons , Madeira/metabolismo , Abies/metabolismo , Parede Celular/química , Poluição Ambiental , Modelos Estatísticos , Picea/metabolismo , Pós , Reprodutibilidade dos Testes , Resinas Vegetais/química , Espectrofotometria Atômica , Fatores de Tempo , Árvores/metabolismo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA