Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 26(11): 1654-1666, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763916

RESUMO

The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , RNA de Transferência/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina/metabolismo , Adenosina Desaminase/química , Adolescente , Sítios de Ligação , Células Cultivadas , Criança , Pré-Escolar , Códon de Terminação , Feminino , Predisposição Genética para Doença , Humanos , Inosina/metabolismo , Deficiência Intelectual/metabolismo , Masculino , Linhagem , Domínios Proteicos , Proteínas de Ligação a RNA/química , Sequenciamento do Exoma
2.
Clin Genet ; 99(2): 325-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174625

RESUMO

Human multiple synostoses syndrome 3 is an autosomal dominant disorder caused by pathogenic variants in FGF9. Only two variants have been described in FGF9 in humans so far, and one in mice. Here we report a novel missense variant c.566C > G, p.(Pro189Arg) in FGF9. Functional studies showed this variant impairs FGF9 homodimerization, but not FGFR3c binding. We also review the findings of cases reported previously and report on additional features not described previously.


Assuntos
Fator 9 de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto , Sinostose/genética , Anormalidades Múltiplas/genética , Adolescente , Fator 9 de Crescimento de Fibroblastos/metabolismo , Heterozigoto , Humanos , Masculino , Fenótipo , Ligação Proteica , Radiografia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sinostose/diagnóstico por imagem , Sinostose/patologia
3.
Am J Med Genet A ; 176(8): 1748-1752, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30055040

RESUMO

Derangements in voltage-gated potassium channel function are responsible for a range of paroxysmal neurologic disorders. Pathogenic variants in the KCNA1 gene, which encodes the voltage-gated potassium channel Kv1.1, are responsible for Episodic Ataxia Type 1 (EA1). Patients with EA1 have an increased incidence of epilepsy, but KCNA1 variants have not been described in epileptic encephalopathy. Here, we describe four patients with infantile-onset epilepsy and cognitive impairment who harbor de novo KCNA1 variants located within the Kv-specific Pro-Val-Pro (PVP) motif which is essential for channel gating. The first two patients have KCNA1 variants resulting in (p.Pro405Ser) and (p.Pro405Leu), respectively, and a set of identical twins has a variant affecting a nearby residue (p.Pro403Ser). Notably, recurrent de novo variants in the paralogous PVP motif of KCNA2 have previously been shown to abolish channel function and also cause early-onset epileptic encephalopathy. Importantly, this report extends the range of phenotypes associated with KCNA1 variants to include epileptic encephalopathy when the PVP motif is involved.


Assuntos
Disfunção Cognitiva/genética , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/genética , Motivos de Aminoácidos/genética , Ataxia/genética , Criança , Pré-Escolar , Disfunção Cognitiva/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Mutação , Mioquimia/genética , Fenótipo
4.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 10-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28990276

RESUMO

Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.


Assuntos
Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética , Exoma , Humanos , Deficiência Intelectual/metabolismo , Mutação , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Transtornos do Neurodesenvolvimento/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Sequenciamento do Exoma/métodos
5.
Hum Mutat ; 38(10): 1394-1401, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28581210

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that tethers more than 150 different proteins to the cell surface. Aberrations in biosynthesis of GPI anchors cause congenital disorders of glycosylation with clinical features including intellectual disability (ID), seizures, and facial dysmorphism. Here, we present two siblings with ID, cerebellar hypoplasia, cerebellar ataxia, early-onset seizures, and minor facial dysmorphology. Using exome sequencing, we identified a homozygous nonsense variant (NM_001127178.1:c.1640G>A, p.Trp547*) in the gene Phosphatidylinositol Glycan Anchor Biosynthesis, Class G (PIGG) in both the patients. Variants in several other GPI anchor synthesis genes lead to a reduced expression of GPI-anchored proteins (GPI-APs) that can be measured by flow cytometry. No significant differences in GPI-APs could be detected in patient granulocytes, consistent with recent findings. However, fibroblasts showed a reduced global level of GPI anchors and of specific GPI-linked markers. These findings suggest that fibroblasts might be more sensitive to pathogenic variants in GPI synthesis pathway and are well suited to screen for GPI-anchor deficiencies. Based on genetic and functional evidence, we confirm that pathogenic variants in PIGG cause an ID syndrome, and we find that loss of function of PIGG is associated with GPI deficiency.


Assuntos
Ataxia Cerebelar/genética , Cerebelo/anormalidades , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ataxia Cerebelar/fisiopatologia , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Citometria de Fluxo , Expressão Gênica , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/deficiência , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Proteínas de Membrana/genética , Malformações do Sistema Nervoso/fisiopatologia , Linhagem , Fosfotransferases (Aceptor do Grupo Álcool)/química , Convulsões/genética , Convulsões/fisiopatologia , Irmãos , Sequenciamento do Exoma
6.
J Med Genet ; 53(10): 697-704, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27334371

RESUMO

BACKGROUND: De novo mutations are a frequent cause of disorders related to brain development. We report the results of screening patients diagnosed with both epilepsy and intellectual disability (ID) using exome sequencing to identify known and new causative de novo mutations relevant to these conditions. METHODS: Exome sequencing was performed on 39 patient-parent trios to identify de novo mutations. Clinical significance of de novo mutations in genes was determined using the American College of Medical Genetics and Genomics standard guidelines for interpretation of coding variants. Variants in genes of unknown clinical significance were further analysed in the context of previous trio sequencing efforts in neurodevelopmental disorders. RESULTS: In 39 patient-parent trios we identified 29 de novo mutations in coding sequence. Analysis of de novo and inherited variants yielded a molecular diagnosis in 11 families (28.2%). In combination with previously published exome sequencing results in neurodevelopmental disorders, our analysis implicates HECW2 as a novel candidate gene in ID and epilepsy. CONCLUSIONS: Our results support the use of exome sequencing as a diagnostic approach for ID and epilepsy, and confirm previous results regarding the importance of de novo mutations in this patient group. The results also highlight the utility of network analysis and comparison to previous large-scale studies as strategies to prioritise candidate genes for further studies. This study adds knowledge to the increasingly growing list of causative and candidate genes in ID and epilepsy and highlights HECW2 as a new candidate gene for neurodevelopmental disorders.


Assuntos
Epilepsia/metabolismo , Deficiência Intelectual/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Análise Mutacional de DNA , Epilepsia/genética , Exoma , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Síndrome
7.
Hum Mutat ; 37(9): 964-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27328812

RESUMO

Chromatin-remodeling factors are required for a wide range of cellular and biological processes including development and cognition, mainly by regulating gene expression. As these functions would predict, deregulation of chromatin-remodeling factors causes various disease syndromes, including neurodevelopmental disorders. Recent reports have linked mutations in several genes coding for chromatin-remodeling factors to intellectual disability (ID). Here, we used exome sequencing and identified a nonsynonymous de novo mutation in BAZ1A (NM_182648.2:c.4043T > G, p.Phe1348Cys), encoding the ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1), in a patient with unexplained ID. ACF1 has been previously reported to bind to the promoter of the vitamin D receptor (VDR)-regulated genes and suppress their expression. Our results show that the patient displays decreased binding of ACF1 to the promoter of the VDR-regulated gene CYP24A1. Using RNA sequencing, we find that the mutation affects the expression of genes involved in several pathways including vitamin D metabolism, Wnt signaling and synaptic formation. RNA sequencing of BAZ1A knockdown cells and Baz1a knockout mice revealed that BAZ1A carry out distinctive functions in different tissues. We also demonstrate that BAZ1A depletion influence the expression of genes important for nervous system development and function. Our data point to an important role for BAZ1A in neurodevelopment, and highlight a possible link for BAZ1A to ID.


Assuntos
Deficiência Intelectual/genética , Sistema Nervoso/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona , Exoma , Redes Reguladoras de Genes , Humanos , Camundongos , Regiões Promotoras Genéticas , Receptores de Calcitriol/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Potenciais Sinápticos , Distribuição Tecidual , Via de Sinalização Wnt
8.
Genet Mol Biol ; 39(3): 349-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561113

RESUMO

Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

9.
Am J Hum Genet ; 89(2): 295-301, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21802062

RESUMO

We report eight unrelated individuals with intellectual disability and overlapping submicroscopic deletions of 8q21.11 (0.66-13.55 Mb in size). The deletion was familial in one and simplex in seven individuals. The phenotype was remarkably similar and consisted of a round face with full cheeks, a high forehead, ptosis, cornea opacities, an underdeveloped alae, a short philtrum, a cupid's bow of the upper lip, down-turned corners of the mouth, micrognathia, low-set and prominent ears, and mild finger and toe anomalies (camptodactyly, syndactyly, and broadening of the first rays). Intellectual disability, hypotonia, decreased balance, sensorineural hearing loss, and unusual behavior were frequently observed. A high-resolution oligonucleotide array showed different proximal and distal breakpoints in all of the individuals. Sequencing studies in three of the individuals revealed that proximal and distal breakpoints were located in unique sequences with no apparent homology. The smallest region of overlap was a 539.7 kb interval encompassing three genes: a Zinc Finger Homeobox 4 (ZFHX4), one microRNA of unknown function, and one nonfunctional pseudogen. ZFHX4 encodes a transcription factor expressed in the adult human brain, skeletal muscle, and liver. It has been suggested as a candidate gene for congenital bilateral isolated ptosis. Our results suggest that the 8q21.11 submicroscopic deletion represents a clinically recognizable entity and that a haploinsufficient gene or genes within the minimal deletion region could underlie this syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Deficiência Intelectual/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Reprodutibilidade dos Testes , Síndrome
11.
Am J Med Genet A ; 164A(9): 2324-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044608

RESUMO

We report here on four males from three families carrying de novo or inherited small Xp22.13 duplications including the ARX gene detected by chromosomal microarray analysis (CMA). Two of these males had normal intelligence. Our report suggests that, unlike other XLMR genes like MECP2 and FMR1, the presence of an extra copy of the ARX gene may not be sufficient to perturb its developmental functions. ARX duplication does not inevitably have detrimental effects on brain development, in contrast with the effects of ARX haploinsufficiency. The abnormal phenotype ascribed to the presence of an extra copy in some male patients may have resulted from the effect of another, not yet identified, chromosomal or molecular anomaly, alone or in association with ARX duplication.


Assuntos
Desenvolvimento Infantil , Duplicação Gênica , Proteínas de Homeodomínio/genética , Inteligência/genética , Fatores de Transcrição/genética , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
12.
Mol Genet Genomic Med ; 12(1): e2295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916443

RESUMO

BACKGROUND: Microcephaly with early-onset seizures (MCSZ) is a neurodevelopmental disorder caused by pathogenic variants in the DNA strand break repair protein, polynucleotide kinase 3'-phosphatase (PNKP). METHODS: We have used whole genome sequencing and Sanger sequencing to identify disease-causing variants, followed by a minigene assay, Western blotting, alkaline comet assay, γH2AX, and ADP-ribose immunofluorescence. RESULTS: Here, we describe a patient with compound heterozygous variants in PNKP, including a missense variant in the DNA phosphatase domain (T323M) and a novel splice acceptor site variant within the DNA kinase domain that we show leads to exon skipping. We show that primary fibroblasts derived from the patient exhibit greatly reduced levels of PNKP protein and reduced rates of DNA single-strand break repair, confirming that the mutated PNKP alleles are dysfunctional. CONCLUSION: The data presented show that the detected compound heterozygous variants result in reduced levels of PNKP protein, which affect the repair of both oxidative and TOP1-induced single-strand breaks, and most likely causes MCSZ in this patient.


Assuntos
Enzimas Reparadoras do DNA , Microcefalia , Humanos , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Microcefalia/genética , Microcefalia/patologia , Mutação , Convulsões/genética , DNA , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
13.
Am J Med Genet B Neuropsychiatr Genet ; 162B(4): 388-403, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23533028

RESUMO

This study aimed to elucidate the observed variable phenotypic expressivity associated with NRXN1 (Neurexin 1) haploinsufficiency by analyses of the largest cohort of patients with NRXN1 exonic deletions described to date and by comprehensively reviewing all comparable copy number variants in all disease cohorts that have been published in the peer reviewed literature (30 separate papers in all). Assessment of the clinical details in 25 previously undescribed individuals with NRXN1 exonic deletions demonstrated recurrent phenotypic features consisting of moderate to severe intellectual disability (91%), severe language delay (81%), autism spectrum disorder (65%), seizures (43%), and hypotonia (38%). These showed considerable overlap with previously reported NRXN1-deletion associated phenotypes in terms of both spectrum and frequency. However, we did not find evidence for an association between deletions involving the ß-isoform of neurexin-1 and increased head size, as was recently published in four cases with a deletion involving the C-terminus of NRXN1. We identified additional rare copy number variants in 20% of cases. This study supports a pathogenic role for heterozygous exonic deletions of NRXN1 in neurodevelopmental disorders. The additional rare copy number variants identified may act as possible phenotypic modifiers as suggested in a recent digenic model of neurodevelopmental disorders.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Éxons , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Deleção de Sequência , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Heterozigoto , Humanos , Cariotipagem , Moléculas de Adesão de Célula Nervosa
14.
Am J Med Genet A ; 158A(7): 1633-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22678713

RESUMO

Patients with a submicroscopic deletion at 1q43q44 present with intellectual disability (ID), microcephaly, craniofacial anomalies, seizures, limb anomalies, and corpus callosum abnormalities. However, the precise relationship between most of deleted genes and the clinical features in these patients still remains unclear. We studied 11 unrelated patients with 1q44 microdeletion. We showed that the deletions occurred de novo in all patients for whom both parents' DNA was available (10/11). All patients presented with moderate to severe ID, seizures and non-specific craniofacial anomalies. By oligoarray-based comparative genomic hybridization (aCGH) covering the 1q44 region at a high resolution, we obtained a critical deleted region containing two coding genes-HNRNPU and FAM36A-and one non-coding gene-NCRNA00201. All three genes were expressed in different normal human tissues, including in human brain, with highest expression levels in the cerebellum. Mutational screening of the HNRNPU and FAM36A genes in 191 patients with unexplained isolated ID did not reveal any deleterious mutations while the NCRNA00201 non-coding gene was not analyzed. Nine of the 11 patients did not present with microcephaly or corpus callosum abnormalities and carried a small deletion containing HNRNPU, FAM36A, and NCRNA00201 but not AKT3 and ZNF238, two centromeric genes. These results suggest that HNRNPU, FAM36A, and NCRNA00201 are not major genes for microcephaly and corpus callosum abnormalities but are good candidates for ID and seizures.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Deficiência Intelectual/genética , RNA não Traduzido/genética , Convulsões/genética , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Cariotipagem , Masculino , Mutação
15.
Neurogenetics ; 12(1): 65-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21225301

RESUMO

Adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms features micturition urgency, constipation, erectile dysfunction, and orthostatic hypotension, usually followed by pyramidal signs and ataxia. Peripheral nerve conduction is normal. The disease is often mistaken for multiple sclerosis in the initial phase. There is a characteristic pattern of white matter changes in the brain and spinal cord on magnetic resonance imaging (MRI), mild atrophy of the brain, and a more marked atrophy of the spinal cord. ADLD is associated with duplications of the lamin B1 (LMNB1) gene but the mechanism by which the rearrangement conveys the phenotype is not fully defined. We analyzed four unrelated families segregating ADLD with autonomic symptoms for duplications of the LMNB1 gene. A single nucleotide polymorphism (SNP) array analysis revealed novel duplications spanning the entire LMNB1 gene in probands from each of the four families. We then analyzed the expression of lamin B1 in peripheral leukocytes by Western blot analysis in five patients from two available families. The protein levels of lamin B1 were found significantly increased. These results indicate that the ADLD phenotype associated with LMNB1 duplications is mediated by increased levels of the lamin B1 protein. Furthermore, we show that a molecular diagnosis for ADLD with autonomic symptoms can be obtained by a direct analysis of lamin B1 in peripheral leukocytes.


Assuntos
Doenças do Sistema Nervoso Autônomo/genética , Duplicação Gênica , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Lamina Tipo B/genética , Adulto , Doenças do Sistema Nervoso Autônomo/sangue , Doenças do Sistema Nervoso Autônomo/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Cromossomos Humanos Par 5/genética , Feminino , Expressão Gênica , Genes Dominantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/sangue , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Lamina Tipo B/sangue , Leucócitos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/sangue , RNA Mensageiro/genética
16.
Nucleic Acids Res ; 35(17): e115, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17823203

RESUMO

Structural variation is an important cause of genetic variation. Whole genome analysis techniques can efficiently identify copy-number variable regions but there is a need for targeted methods, to verify and accurately size variable regions, and to diagnose large sample cohorts. We have developed a technique based on multiplex amplification of size-coded selectively circularized genomic fragments, which is robust, cheaper and more rapid than current multiplex targeted copy-number assays.


Assuntos
Dosagem de Genes , Reação em Cadeia da Polimerase/métodos , Síndrome de Down/genética , Feminino , Variação Genética , Genômica/métodos , Humanos , Masculino , Reação em Cadeia da Polimerase/economia , Fatores de Tempo
17.
Acta Paediatr ; 98(4): 693-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19120036

RESUMO

AIM: The clinical overlap among Noonan syndrome (NS), cardio-facio-cutaneous (CFC), LEOPARD and Costello syndromes as well as Neurofibromatosis type 1 is extensive, which complicates the process of diagnosis. Further genotype-phenotype correlations are required to facilitate future diagnosis of these patients. Therefore, investigations of the genetic cause of a severe phenotype in a patient with NS and the presence of multiple café-au-lait spots (CAL) spots in the patient and four members of the family were performed. METHODS: Mutation analyses of candidate genes, PTPN11, NF1, SPRED1 and SPRED2, associated with these syndromes, were conducted using DNA sequencing. RESULTS: A previously identified de novo mutation, PTPN11 F285L and an inherited NF1 R1809C substitution in the index patient were found. However, neither PTPN11 F285L, NF1 R1809C, SPRED1 nor SPRED2 segregated with CAL spots in the family. The results indicate that the familial CAL spots trait in this family is caused by a mutation in another gene, distinct from previous genes associated with CAL spots in these syndromes. CONCLUSION: We suggest that the atypical severe symptoms in the index patient may be caused by an additive effect on the F285L mutation in PTPN11 by another mutation, for example the NF1 R1809C or alternatively, the not yet identified gene mutation associated with CAL spots in this family.


Assuntos
Manchas Café com Leite/genética , Genes da Neurofibromatose 1 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Análise Mutacional de DNA , Família , Feminino , Ligação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Síndrome de Noonan/diagnóstico , Fenótipo , Adulto Jovem
18.
Hum Mutat ; 29(3): 398-408, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18058796

RESUMO

To further explore the extent of structural large-scale variation in the human genome, we assessed copy number variations (CNVs) in a series of 71 healthy subjects from three ethnic groups. CNVs were analyzed using comparative genomic hybridization (CGH) to a BAC array covering the human genome, using DNA extracted from peripheral blood, thus avoiding any culture-induced rearrangements. By applying a newly developed computational algorithm based on Hidden Markov modeling, we identified 1,078 autosomal CNVs, including at least two neighboring/overlapping BACs, which represent 315 distinct regions. The average size of the sequence polymorphisms was approximately 350 kb and involved in total approximately 117 Mb or approximately 3.5% of the genome. Gains were about four times more common than deletions, and segmental duplications (SDs) were overrepresented, especially in larger deletion variants. This strengthens the notion that SDs often define hotspots of chromosomal rearrangements. Over 60% of the identified autosomal rearrangements match previously reported CNVs, recognized with various platforms. However, results from chromosome X do not agree well with the previously annotated CNVs. Furthermore, data from single BACs deviating in copy number suggest that our above estimate of total variation is conservative. This report contributes to the establishment of the common baseline for CNV, which is an important resource in human genetics.


Assuntos
Dosagem de Genes , Variação Genética , Grupos Raciais/genética , Algoritmos , Povo Asiático/genética , População Negra/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos X/genética , Feminino , Duplicação Gênica , Rearranjo Gênico , Genoma Humano , Humanos , Masculino , Cadeias de Markov , Análise de Sequência com Séries de Oligonucleotídeos , População Branca/genética
19.
Eur J Paediatr Neurol ; 22(6): 1095-1102, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194038

RESUMO

We aim to further delineate the phenotype associated with pathogenic variants in the SLC35A2 gene, and review all published literature to-date. This gene is located on the X chromosome and encodes a UDP-galactose transporter. Pathogenic variants in SLC35A2 cause a congenital disorder of glycosylation. The condition is rare, and less than twenty patients have been reported to-date. The phenotype is complex and has not been fully defined. Here, we present a series of five patients with de novo pathogenic variants in SLC35A2. The patients' phenotype includes developmental and epileptic encephalopathy with hypsarrhythmia, facial dysmorphism, severe intellectual disability, skeletal abnormalities, congenital cardiac disease and cortical visual impairment. Developmental and epileptic encephalopathy with hypsarrhythmia is present in most patients with SLC35A2 variants, and is drug-resistant in the majority of cases. Adrenocorticotropic hormone therapy may achieve partial or complete remission of seizures, but the effect is usually temporary. Isoelectric focusing of transferrins may be normal after infancy, therefore a congenital disorder of glycosylation should still be considered as a diagnosis in the presence of a suggestive phenotype. We also provide evidence that cortical visual impairment is part of the phenotypic spectrum.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Proteínas de Transporte de Monossacarídeos/genética , Criança , Feminino , Glicosilação , Humanos , Lactente , Fenótipo
20.
Eur J Hum Genet ; 15(2): 143-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17106445

RESUMO

Cornelia de Lange syndrome (CdLS; OMIM 122470) is a rare multiple congenital anomaly/mental retardation syndrome characterized by distinctive dysmorphic facial features, severe growth and developmental delay and abnormalities of the upper limbs. About 50% of CdLS patients have been found to have heterozygous mutations in the NIPBL gene and a few cases were recently found to be caused by mutations in the X-linked SMC1L1 gene. We performed a mutation screening of all NIPBL coding exons by direct sequencing in 11 patients (nine sporadic and two familial cases) diagnosed with CdLS in Sweden and detected mutations in seven of the cases. All were de novo, and six of the mutations have not been previously described. Four patients without identifiable NIPBL mutations were subsequently subjected to multiplex ligation-dependent probe amplification analysis to exclude whole exon deletions/duplications of NIPBL. In addition, mutation analysis of the 5' untranslated region (5' UTR) of NIPBL was performed. Tiling resolution array comparative genomic hybridization analysis was carried out on these four patients to detect cryptic chromosome imbalances and in addition the boys were screened for SMC1L1 mutations. We found a de novo 9p duplication with a size of 0.6 Mb in one of the patients with a CdLS-like phenotype but no mutations were detected in SMC1L1. So far, two genes (NIPBL and SMC1L1) have been identified causing CdLS or CdLS-like phenotypes. However, in a considerable proportion of individuals demonstrating the CdLS phenotype, mutations in any of these two genes are not found and other potential loci harboring additional CdLS-causing genes should be considered.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Proteínas/genética , Regiões 5' não Traduzidas/genética , Adolescente , Criança , Instabilidade Cromossômica , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação , Hibridização de Ácido Nucleico , Fenótipo , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA