RESUMO
Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.
Assuntos
Quinase 5 Dependente de Ciclina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Mitocôndrias , Podócitos , Animais , Humanos , Masculino , Camundongos , Apoptose , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Glucose , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Podócitos/metabolismo , Podócitos/patologiaRESUMO
Glioblastoma (GBM) is the most common malignant diffuse glioma of the brain. Although immunotherapy with immune checkpoint inhibitors (ICIs), such as programmed cell death protein (PD)-1/PD ligand-1 inhibitors, has revolutionized the treatment of several cancers, the clinical benefit in GBM patients has been limited. Lymphocyte-activation gene 3 (LAG-3) binding to human leukocyte antigen-II (HLA-II) plays an essential role in triggering CD4+ T cell exhaustion and could interfere with the efficiency of anti-PD-1 treatment; however, the value of LAG-3-HLA-II interactions in ICI immunotherapy for GBM patients has not yet been analyzed. Therefore, we aimed to investigate the expression and regulation of HLA-II in human GBM samples and the correlation with LAG-3+CD4+ T cell infiltration. Human leukocyte antigen-II was highly expressed in GBM and correlated with increased LAG-3+CD4+ T cell infiltration in the stroma. Additionally, HLA-IIHighLAG-3High was associated with worse patient survival. Increased interleukin-10 (IL-10) expression was observed in GBM, which was correlated with high levels of HLA-II and LAG-3+ T cell infiltration in stroma. HLA-IIHighIL-10High GBM associated with LAG-3+ T cells infiltration synergistically showed shorter overall survival in patients. Combined anti-LAG-3 and anti-IL-10 treatment inhibited tumor growth in a mouse brain GL261 tumor model. In vitro, CD68+ macrophages upregulated HLA-II expression in GBM cells through tumor necrosis factor-α (TNF-α). Blocking TNF-α-dependent inflammation inhibited tumor growth in a mouse GBM model. In summary, T cell-tumor cell interactions, such as LAG-3-HLA-II, could confer an immunosuppressive environment in human GBM, leading to poor prognosis in patients. Therefore, targeting the LAG-3-HLA-II interaction could be beneficial in ICI immunotherapy to improve the clinical outcome of GBM patients.
Assuntos
Antígenos CD , Neoplasias Encefálicas , Linfócitos T CD4-Positivos , Glioblastoma , Proteína do Gene 3 de Ativação de Linfócitos , Regulação para Cima , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/metabolismo , Microambiente Tumoral/imunologia , Pessoa de Meia-IdadeRESUMO
BACKGROUND: The correlation between the triglyceride-glucose index (TyG) and the prognosis of ischemic stroke has been well established. This study aims to assess the influence of the TyG index on the clinical outcomes of critically ill individuals suffering from intracerebral hemorrhage (ICH). METHODS: Patients diagnosed with ICH were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). Various statistical methods, including restricted cubic spline (RCS) regression, multivariable logistic regression, subgroup analysis, and sensitivity analysis, were employed to examine the relationship between the TyG index and the primary outcomes of ICH. RESULTS: A total of 791 patients from MIMIC-IV and 1,113 ones from eICU-CRD were analyzed. In MIMIC-IV, the in-hospital and ICU mortality rates were 14% and 10%, respectively, while in eICU-CRD, they were 16% and 8%. Results of the RCS regression revealed a consistent linear relationship between the TyG index and the risk of in-hospital and ICU mortality across the entire study population of both databases. Logistic regression analysis revealed a significant positive association between the TyG index and the likelihood of in-hospital and ICU death among ICH patients in both databases. Subgroup and sensitivity analysis further revealed an interaction between patients' age and the TyG index in relation to in-hospital and ICU mortality among ICH patients. Notably, for patients over 60 years old, the association between the TyG index and the risk of in-hospital and ICU mortality was more pronounced compared to the overall study population in both MIMIC-IV and eICU-CRD databases, suggesting a synergistic effect between old age (over 60 years) and the TyG index on the in-hospital and ICU mortality of patients with ICH. CONCLUSIONS: This study established a positive correlation between the TyG index and the risk of in-hospital and ICU mortality in patients over 60 years who diagnosed with ICH, suggesting that the TyG index holds promise as an indicator for risk stratification in this patient population.
Assuntos
Glicemia , Hemorragia Cerebral , Estado Terminal , Mortalidade Hospitalar , Triglicerídeos , Humanos , Masculino , Feminino , Idoso , Estado Terminal/mortalidade , Mortalidade Hospitalar/tendências , Hemorragia Cerebral/sangue , Hemorragia Cerebral/mortalidade , Hemorragia Cerebral/diagnóstico , Estudos Retrospectivos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Triglicerídeos/sangue , Glicemia/análise , Glicemia/metabolismo , Unidades de Terapia Intensiva/tendências , Idoso de 80 Anos ou mais , Prognóstico , Valor Preditivo dos TestesRESUMO
Background: Acute severe organophosphorus pesticide poisoning (ASOPP) is one of the major diseases that endanger human life and health. However, the effects of conventional therapy including gastric lavages, mechanical ventilation, muscarinic antagonist drugs, and cholinesterase reactivators were uncertain. This meta-analysis aims to investigate the safety and efficacy of hemoperfusion combined with hemofiltration besides routine therapy for ASOPP. Materials and Methods: A comprehensive search for candidate publications was performed through PubMed, Medline, Cochrane Library, WanFang, Chinese Biomedical Literature, and China National Knowledge Infrastructure from database inception to May 12, 2020. The retrieved studies were screened by the predefined inclusion and exclusion criteria. The data of important end points were extracted. The risk ratio (RR) and weighted mean difference (WMD) were pooled for categorical variables and continuous variables, respectively. Meta-analyses and publication bias were conducted by using STATA software version 15.1. Results: A total of 11 randomized controlled trials with 811 patients were included. Compared to conventional therapy group, patients in the hemoperfusion plus hemofiltration group were significantly superior with regard to mortality (RR 0.38, 95% confidence interval [CI] [0.25, 0.57], P < 0.001), total atropine dosing (WMD -147.34 mg, 95% CI [-199.49, -95.18], P < 0.001), duration of mechanical ventilation (WMD -2.34 days, 95% CI [-3.77, -0.92], P < 0.001), cholinesterase recovery time (WMD -2.49 days, 95% CI [-3.14, -1.83], P < 0.001), and length of stay (WMD -4.52 days, 95% CI [-5.31, -3.73], P < 0.001). Conclusion: Combined hemoperfusion and hemofiltration was a very safe and effective treatment protocol for ASOPP, not only resulting in significantly decreased mortality but also resulting in reduced total atropine dosing, duration of mechanical ventilation, cholinesterase recovery time, and length of stay.
RESUMO
The Mitochondrial-derived peptide MOTS-c has recently been reported as a 16-amino acid peptide regulating metabolism and homeostasis in different cells. However, its effects on immune cells and bone metabolism are rarely reported. Here we demonstrate that MOTS-c treatment in ultra-high molecular weight polyethylene (UHMWPE) particle-induced osteolysis mouse model alleviated bone erosion and inflammation. MOTS-c increased osteoprotegerin (OPG)/ receptor activator of nuclear factor kappa-B ligand (RANKL) ratio in osteocytes, leading to inhibition of osteoclastogenesis. In primary bone marrow macrophages (BMMs) MOTS-c alleviated STAT1 and NF-κB phosphorylation triggered by UHMWPE particles. Promoting ROS production or suppressing peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) repression blocked these anti-inflammatory effects of MOTS-c treatment. Taken together, these findings provide evidence that the small peptide inhibits osteoclastogenesis by regulating osteocyte OPG/RANKL secretion and suppressing inflammation via restraining NF-κB and STAT1 pathway. Moreover, its effects on NF-κB activation is dependent on the AMPK-PGC-1α-ROS axis, suggesting its potential use in osteolysis and other inflammation disorders.
Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Proteínas Mitocondriais/farmacologia , Proteínas Mitocondriais/uso terapêutico , Osteólise/tratamento farmacológico , Crânio/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Osteólise/induzido quimicamente , Osteólise/metabolismo , Polietileno , Ligante RANK/genética , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Crânio/metabolismo , Crânio/patologiaRESUMO
Metformin, an anti-hyperglycemic agent used for type 2 diabetes, has recently been found to have more effects apart from glucose regulation. We found that, in ultra-high-molecular-weight polyethylene particle-induced osteolysis mouse models, metformin had bone protect property and reduced the negative regulator of bone formation sclerostin (SOST) and Dickkopf-related protein 1 (DKK1), and increased osteoprotegerin (OPG) secretion and the ratio of OPG/Receptor Activator for Nuclear Factor-κB Ligand (RANKL). In vitro, we established a 3D co-culture system in which metformin affects osteoblasts and osteoclasts through mature osteocytes secretion. Metformin (50 µM) significantly decreased SOST and DKK1 mRNA expression, stimulating alkaline phosphatase activity and proliferation of osteoblast, and increased OPG secretion and the ratio of OPG/RANKL, inhibiting osteoclastogenesis. Moreover, the effect on OPG was reversed by adenosine 5'-monophosphate-activated protein kinase inhibitor, Compound C. Our finding suggests that metformin induces differentiation and mineralization of osteoblasts, while inhibits osteoclastogenesis via mature osteocytes secretion. Therefore, the drug might be beneficial for not only diabetes but also in other bone disorders by acting on mature osteocytes.
Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Metformina/farmacologia , Osteócitos/metabolismo , Osteólise/induzido quimicamente , Polietilenos/efeitos adversos , Substâncias Protetoras/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Adenilato Quinase/metabolismo , Animais , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Glicoproteínas/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/patologia , Osteoprotegerina/metabolismo , Fosforilação/efeitos dos fármacos , Ligante RANK/metabolismo , Crânio/efeitos dos fármacos , Crânio/patologiaRESUMO
BACKGROUND: Implant failure remains a major obstacle to successful treatment via TJA. Periprosthetic osteolysis and aseptic loosening are considered as proof of wear debris-induced disruption of local regulatory mechanisms related to excessive bone resorption associated with osteolysis and the damage at the bone-prosthesis interface. Therefore, there is an immediate need to explore strategies for limiting and curing periprosthetic osteolysis and aseptic loosening. METHODS: We analyzed the in vitro cytokine production by primary mouse bone marrow macrophages (BMMs) that were exposed to ultra-high molecular weight polyethylene (UHMWPE) particles and treated with metformin at different concentrations with or without 5-aminoimidazole-4-carboxamide ribonucleoside to activate or inhibit AMPK. A mouse calvarial model was used to examine the in vivo effects of metformin on UHMWPE particle-induced osteolysis. RESULTS: With particles, primary mouse BMMs secreted more pro-inflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6. Treatment with metformin inhibited these variations and promoted the release of cytokine IL-10 with anti-inflammatory capability. In vivo, metformin reduced the production of pro-inflammatory cytokines, osteoclastogenesis, and osteolysis, increasing IL-10 production. Metformin also promoted the polarization of macrophages to an anti-inflammatory phenotype in vivo via AMPK activation. DISCUSSION: A crucial point in limiting and correcting the periprosthetic osteolysis and aseptic loosening is the inhibition of inflammatory factor production and osteoclast activation induced by activated macrophages. The ability of metformin to attenuate osteolysis induced in mouse calvaria by the particles was related to a reduction in osteoclast number and polarization of macrophages to an anti-inflammatory functional phenotype. CONCLUSIONS: Metformin could limit the osteolysis induced by implant debris. Therefore, we hypothesized that metformin could be a potential drug for osteolysis induced by implant debris.
Assuntos
Anti-Inflamatórios/uso terapêutico , Macrófagos/efeitos dos fármacos , Metformina/uso terapêutico , Osteólise/tratamento farmacológico , Crânio/efeitos dos fármacos , Animais , Células Cultivadas , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Polietilenos , Próteses e ImplantesRESUMO
A novel first-order nonparaxial scalar theory for calculating the angular scattering that is caused by the interface roughness in an optical multilayer was proposed. As in the case that the interface roughness is moderate, the analytic expressions of angular-resolved scattering for a typical p-layer design were derived. Notably, these formulas are general because they do not depend on the prior restrictive hypothesis for the correlation degree of the various interfaces in a stack. In order to verify the theory, the formulas in the case of single-surface are presented and are exactly identical to those of the generalized Harvey-Shack theory. Also, their smooth-surface approximations are the same in form as those given by the typical first-order vector perturbation theories and are validated by numerically comparing with the typical vector theory for three representative multilayer design types with slightly rough interfaces. In addition, the usability of the novel theory in the case of moderate roughness is discussed by comparing this theory to the typical theories for optical coatings at different roughness levels.
RESUMO
A novel nonparaxial scalar theory is presented to calculate the angular scattering that is due to interface roughnesses or bulk inhomogeneities in a high-quality optical coating. Based on the empirically modified Beckmann-Kirchhoff surface scatter model, this theory in surface scattering and bulk scattering predicts similar formulas for the angular scattered intensity, and at the same time provides new understanding and insight into multilayer scattering phenomena. It is worth noting that the derived expressions are in the same form as those given by the typical vector methods. Based on comparisons of the surface and bulk models with the corresponding typical models for several multilayer designs, the novel theory is demonstrated to be valid for multilayer coatings even with large incident and scattering angles.
RESUMO
Effective representation learning is essential for neuroimage-based individualized predictions. Numerous studies have been performed on fMRI-based individualized predictions, leveraging sample-wise, spatial, and temporal interdependencies hidden in fMRI data. However, these studies failed to fully utilize the effective information hidden in fMRI data, as only one or two types of the interdependencies were analyzed. To effectively extract representations of human brain function through fully leveraging the three types of the interdependencies, we establish a pure transformer-based framework, Transformer3, leveraging transformer's strong ability to capture interdependencies within the input data. Transformer3 consists mainly of three transformer modules, with the Batch Transformer module used for addressing sample-wise similarities and differences, the Region Transformer module used for handling complex spatial interdependencies among brain regions, and the Time Transformer module used for capturing temporal interdependencies across time points. Experiments on age, IQ, and sex predictions based on two public datasets demonstrate the effectiveness of the proposed Transformer3. As the only hypothesis is that sample-wise, spatial, and temporal interdependencies extensively exist within the input data, the proposed Transformer3 can be widely used for representation learning based on multivariate time-series. Furthermore, the pure transformer framework makes it quite convenient for understanding the driving factors underlying the predictive models based on Transformer3.
RESUMO
BACKGROUND: The role of stress hyperglycemia ratio (SHR) on the prognosis of spontaneous intracerebral hemorrhage (ICH) in patients with different diabetic status has not been elucidated. This study aimed to evaluate the prognostic value of SHR and admission blood glucose (ABG) for the short- and long-term mortality in diabetic and nondiabetic populations with ICH. METHOD: Participants with ICH were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC-IV). The primary outcome was all-cause 30-day and 1-year mortality. The association of SHR and ABG with the primary outcomes in diabetic and nondiabetic cohorts were assessed by Cox proportional hazard regression. RESULTS: Overall, 1029 patients with a median age of 71.09 (IQR: 60.05-81.97) were included. Among them, 548 (53%) individuals were male, and 95 (19%) as well as 323 (31%) ones experienced the 30-day and 1-year mortality, respectively. After adjusting for confounding variables, individuals in quintile 5 of SHR had significantly higher risk of the 30-day and 1-year mortality than those in quintile 1 in the whole cohort (30-day mortality: HR 3.33, 95%CI 2.01-5.51; 1-year mortality: HR 2.09, 95% CI 1.46-3.00) and in nondiabetic patients (30-day mortality: HR 4.55, 95%CI 2.33-8.88; 1-year mortality: HR 3.06, 95%CI 1.93-4.86), but no significant difference was observed in diabetic patients. Similar results were observed for ABG as a categorical variable. As continuous variable, SHR was independently correlated with the 30-day and 1-year mortality in both of the diabetic and nondiabetic cohorts (30-day mortality: HR 2.63, 95%CI 1.50-4.60. 1-year mortality: HR 2.12, 95%CI 1.33-3.39), but this correlation was only observed in nondiabetic cohort for ABG (HR 1.00, 95%CI 0.99-1.01 for both of the 30-day and 1-year mortality). Moreover, compared with ABG, SHR can better improve the C-statistics of the original models regarding the 30-day and 1-year outcomes, especially in patients with diabetes (p < 0.001 in all models). CONCLUSION: SHR might be a more useful and reliable marker than ABG for prognostic prediction and risk stratification in critically ill patients with ICH, especially in those with diabetes.
RESUMO
Pleomorphic xanthoastrocytoma (PXA) is a rare tumor ranging from World Health Organization (WHO) grades 2-3 and can potentially recur and metastasize throughout the central nervous system (CNS). Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion is a frequent genomic alteration of PXA. Methylthioadenosine phosphorylase (MTAP) immunohistochemistry is a promising surrogate marker for CDKN2A homozygous deletion in different cancers but has not been examined in PXA. Therefore, we performed CDKN2A fluorescence in situ hybridization and MTAP immunohistochemistry on specimens from 23 patients with CNS WHO grades 2 (n = 10) and 3 (n = 13) PXAs, including specimens from primary and recurrent tumors, and determined whether MTAP immunohistochemistry correlated with CDKN2A homozygous deletion and clinicopathological features. CDKN2A homozygous deletion was detected in 30% (3/10) and 76.9% (10/13) of CNS WHO grades 2 and 3 PXAs, respectively. In addition, MTAP loss was inconsistent with CDKN2A homozygous deletion (sensitivity = 86.7%, specificity = 100%). Furthermore, CDKN2A homozygous deletion was correlated with WHO grade (p = 0.026) and the Ki-67 labeling index (p = 0.037). Therefore, MTAP immunostaining can be a suitable surrogate marker for CDKN2A homozygous deletions in PXAs, and CDKN2A homozygous deletions may be an important prognostic factor for PXAs.
Assuntos
Astrocitoma , Inibidor p16 de Quinase Dependente de Ciclina , Humanos , Homozigoto , Hibridização in Situ Fluorescente , Deleção de Genes , Deleção de Sequência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Astrocitoma/genéticaRESUMO
The work studied the adsorption properties and mechanism of Cu-Al-Fe-Cr quasicrystals (QCs) for the adsorption of ibuprofen (IBU), tedizolid phosphate (TZD), and sulbactam sodium (SAM) for the first time. The experimental results showed that quasicrystals were good adsorbents with great potential. The structure, surface morphology, and elemental composition of QCs were investigated by XPS, XRD, SEM, EDX, particle size, DSC-TG, and FTIR. The adsorption pH, kinetics, thermodynamics, and isotherms of IBU, TZD, and SAM in QCs were systematically studied. QCs had good adsorption performance for antibiotics, and the adsorption capacities of IBU, TZD, and SAM were 46.964, 49.206, and 35.292 mg g-1 at the concentration of 25 mg L-1, respectively. The surface charge and hydrophobicity of QCs were affected by changing pH, thereby affecting the adsorption performance of QCs. The main driving forces of adsorption included electrostatic force and hydrophobicity.
RESUMO
Sepsis is one of the most common diseases in patients in intensive care units. Intestinal barrier dysfunction serves a critical role in the pathogenesis and progression of sepsis. Therefore, preservation of the intestinal epithelial barrier function is an area of ongoing research in the treatment of sepsis. The present study investigated the effects of miR-133a-3p on the proliferation and apoptosis of intestinal epithelial cells and the possible mechanism underlying its actions. miR-133a-3p was used to upregulate the intestinal epithelial FHs 74 Int cell line and cell proliferation and apoptosis were investigated. A luciferase reporter assay was used to determine whether the 3'-UTR of TAGLN2 mRNA was a binding target of miR-133a-3p. FHs 74 Int cells were transfected with TAGLN2 shRNA and the effects of TAGLN2 on the proliferation and apoptosis of intestinal epithelial cells were investigated. It was found that miR-133a-3p inhibited the proliferation and promoted the apoptosis of intestinal epithelial cells. A luciferase reporter assay confirmed that miR-133a-3p targeted TAGLN2 directly. In addition, low expression of TAGLN2 inhibited the proliferation and promoted the apoptosis of intestinal epithelial cells. The results of the present study suggested that the miR-133a-3p inhibition of proliferation and promotion of apoptosis occurred via the inhibition of TAGLN2. These results suggested that miR-133a-3p may be a promising therapeutic target for the diagnosis and treatment of gut-origin sepsis.
RESUMO
OBJECTIVE: Neuroepithelial-transforming protein 1 is a member of the guanine nucleotide exchange factor family, a group of proteins which are known to activate and thereby regulate Rho family members. Deregulation of neuroepithelial-transforming protein 1 expression has been found in certain types of human tumors. To investigate its prognostic value in human gliomas, which is currently unknown, we examined the correlation between neuroepithelial-transforming protein 1 expression and prognosis in patients with gliomas. METHODS: Immunohistochemical staining was performed to detect neuroepithelial-transforming protein 1 expression patterns in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox's regression analyses were performed to evaluate the prognosis of patients. RESULTS: Immunohistochemical analysis with anti-neuroepithelial-transforming protein 1 antibody revealed that neuroepithelial-transforming protein 1 was significantly associated with the Karnofsky performance scale score and World Health Organization grades of patients with gliomas. Especially, the positive expression rates of neuroepithelial-transforming protein 1 were significantly higher in patients with higher grade (P = 0.001) and lower Karnofsky's performance scale score (P = 0.005). The median survival of patients with high neuroepithelial-transforming protein 1 expression was significantly shorter than that with low expression and without expression (316, 892 and 1180 days, respectively). Cox's multifactor analysis showed that the Karnofsky performance scale (P = 0.01), World Health Organization grade (P = 0.008) and neuroepithelial-transforming protein 1 (P = 0.006) were independent prognosis factors for human glioma. CONCLUSIONS: Taken together, our study indicates for the first time that neuroepithelial-transforming protein 1 status may be a highly sensitive marker for glioma prognosis and suggest that the expression patterns of neuroepithelial-transforming protein 1 might be a potent tool for predicting the clinical prognosis of glioma patients.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas Oncogênicas/metabolismo , Estudos de Casos e Controles , China , Feminino , Humanos , Imuno-Histoquímica , Avaliação de Estado de Karnofsky , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Prognóstico , Análise de SobrevidaRESUMO
OBJECTIVE: To observe the protective effects of safflor Injection (SI) and extract of Ginkgo biloba (EGB) on lung ischemia-reperfusion injury (LIRI) and investigate its mechanism. METHODS: In vivo rabbit model of LIRI was reconstructed. Forty rabbits were randomly and equally divided into four groups: sham-operation group (sham group), ischemia-reperfusion group (model group), ischemia-reperfusion plus SI group (safflor group) and ischemia-reperfusion plus EGB injection group (EGB group). Malondialdehyde (MDA) content, superoxide dismutase (SOD) and xanthine oxidase (XO) activity in serum were measured. The wet/dry weight ratio (W/D) of the lung tissue and activity of myeloperoxidase (MPO) were also tested. Ultrastructure change of the lung tissue was observed by the electron microscope. The expression of intercellular adhesion molecule-1 (ICAM-1) was measured by immunohistochemistry (IHC). RESULTS: In the model group, MDA and XO increased and SOD decreased in serum compared with the sham group (P<0.01). The values of W/D, MPO and ICAM-1 of the model group were higher than those of the sham group (P<0.01), but those of the safflor group and EGB group were significantly lower than those of the model group (P<0.01). The IHC demonstrated that ICAM-1 expression in lung tissue of the model group was significantly higher than those of the safflor group (P<0.01). Compared with safflor group, in the EGB group MDA, XO, MPO decreased, SOD and ICAM-1 expression increased (P<0.05), but the change of W/D was not statistically significant (P>0.05). CONCLUSIONS: SI and EGB may attenuate LIRI through antioxidation, inhibition of neutrophil aggregation and down-regulation of ICAM-1 expression. But EGB had more effect on the antioxidation, while SI did better on regulating ICAM-1 expression.
Assuntos
Ginkgo biloba/química , Pulmão/irrigação sanguínea , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Óleo de Cártamo/uso terapêutico , Animais , Feminino , Imuno-Histoquímica , Injeções , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Coelhos , Traumatismo por Reperfusão/sangue , Óleo de Cártamo/administração & dosagem , Óleo de Cártamo/farmacologia , Superóxido Dismutase/sangue , Xantina Oxidase/sangueRESUMO
To investigate the effect of serum leptin level and leptin receptor (Lepr) genetic mutation on chronic bronchitis, we measured the serum leptin levels of 236 patients with chronic bronchitis and 107 healthy controls by ELISA, the genotype distribution of Lepr gene containing Gln223Arg polymorphic sites by the polymerase chain reaction-restriction fragment length polymorphism (RFLP) method, the levels of inflammatory markers in serum, and the concentration of neutrophils. We found that the GG genotype distribution and G gene frequency of Lepr gene Gln223Arg site of the patient group were higher than that in the control group. The serum high-sensitivity C-reactive protein and neutrophil granulocyte levels of the patient group were higher than those of the control group. But the leptin concentrations of those with GG genotype were lower than those with AA+AG genotype (P < .05). The mutation of Lepr gene Gln223Arg site may not directly influence the leptin level but could possibly advance the disease through inhibiting the biological effect of leptin.
Assuntos
Bronquite Crônica/genética , Polimorfismo Genético/genética , Receptores para Leptina/genética , Idoso , Bronquite Crônica/sangue , Estudos de Casos e Controles , Feminino , Humanos , Leptina/sangue , Masculino , Pessoa de Meia-IdadeRESUMO
JAK/STAT pathway transmits signals from the cell membrane to the nucleus in response to extracellular growth factors and cytokines. Activation of this pathway has been found in certain types of human tumors. The goal of this study was to investigate the correlation between the JAK/STAT pathway in human gliomas and patients' prognosis, which currently is unknown. Western blotting analysis and immunohistochemical staining were performed to detect JAK-1, phosphorylated JAK-1, and STAT-3 expression patterns in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of patients. Western blotting analysis and immunohistochemical staining both indicated that the expression levels of JAK-1, phosphorylated JAK-1, and STAT-3 in primary glioma tissues were significantly higher than those in normal brain tissues (P < 0.001). Especially, the positive expression rates of JAK-1, phosphorylated JAK-1, and STAT-3 were significantly higher in patients with higher grade (P = 0.001, 0.001, and 0.002, respectively) and lower KPS score (P = 0.01, 0.008, and 0.01, respectively). Statistical analysis showed that patients with gliomas expressing JAK-1 and STAT-3 have lower overall survival rates relative to those not expressing these proteins. Cox multi-factor analysis showed that KPS (P = 0.03), WHO grade (P = 0.008), JAK-1 (P = 0.005), and STAT-3 (P = 0.006) were independent prognosis factors for human gliomas. These results provide convincing evidence for the first time that the JAK/STAT pathway may play a role in the progression of human gliomas. Its activated state might be a potent tool for predicting the clinical prognosis of patients with glioma.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Western Blotting , Neoplasias Encefálicas/cirurgia , Feminino , Seguimentos , Glioma/cirurgia , Humanos , Técnicas Imunoenzimáticas , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de SobrevidaRESUMO
Paraquat (PQ)-induced pulmonary toxicity is known to result in pulmonary edema, infiltration of inflammatory cells and damage to the alveolar epithelium, which may progress to severe fibrosis. Matrix metalloproteinases (MMPs) and their physiological inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs), which degrade and remodel the excess extracellular matrix, are believed to play an important role in the development of fibrotic tissue. In this study, we examined the sequential expression of MMP-2, MMP-9 and TIMP-1 in a rat model of pulmonary fibrosis induced by PQ. Adult male Sprague-Dawley rats were treated intraperitoneally with PQ (20 mg/kg) and saline (control group). Rats were sacrificed at days 1, 3, 7 and 21 after the PQ treatment. Lungs were excised for histological evaluation and immunohistochemical analyses, as well as the determination of collagen content, gene expression by fluorimeter-based quantitive RT-PCR assay and gelatinolytic activity by zymography. Lung MMP-2 and -9 mRNA expression progressively increased and reached a peak on day 7 after PQ treatment, while TIMP-1 mRNA levels in the PQ-treated lungs reached a peak on day 21 after modeling. Lung zymography revealed an increase in progelatinase B, progelatinase A and their active forms. In conclusion, unbalanced MMP/TIMP-1 expression and excessive gelatinolytic activity contribute to PQ-induced pulmonary fibrosis. Their precise role should be studied in depth as they may represent relevant therapeutic targets for PQ poisoning-induced pulmonary fibrosis.