RESUMO
Delocalized-localized electron interactions are central to strongly correlated electron phenomena. Here, we study the Kondo effect, a prototypical strongly correlated phenomena, in a tunable fashion using gold nanostructures (nanoparticle, NP, and nanoshell, NS) + molecule cross-linkers (butanedithiol, BDT). NP films exhibit hallmark signatures of the Kondo effect, including (1) a log temperature resistance upturn as temperature decreases in a metallic regime, and (2) zero-bias conductance peaks (ZBCPs) that are well fit by a Frota function near a percolation insulator transition, previously used to model Kondo peaks observed using tunnel junctions. Remarkably, NP + NS films exhibit ZBCPs that persist to >220 K, i.e., >10-fold higher than that in NP films. Magnetic measurements reveal that moments in NP powders align, and in NS powders, they antialign at low temperatures. Based on these observations, we propose a mechanism in which varying such material nanobuilding blocks can modify electron-electron interactions to such a large degree.
RESUMO
Black phosphorus (BP) is unique among layered materials because of its homonuclear lattice and strong structural anisotropy. While recent investigations on few-layer BP have extensively explored the in-plane (a, c) anisotropy, much less attention has been given to the out-of-plane direction (b). Here, the optical response from bulk BP is probed using polarization-resolved photoluminescence (PL), photoluminescence excitation (PLE), and resonant Raman scattering along the zigzag, out-of-plane, and armchair directions. An unexpected b-polarized luminescence emission is detected in the visible, far above the fundamental gap. PLE indicates that this emission is generated through b-polarized excitation at 2.3 eV. The same electronic resonance is observed in resonant Raman with the enhancement of the Ag phonon modes scattering efficiency. These experimental results are fully consistent with DFT calculations of the permittivity tensor elements and demonstrate the remarkable extent to which the anisotropy influences the optical properties and carrier dynamics in black phosphorus.
RESUMO
Graphene field-effect transistors (GFETs) are emerging as bioanalytical sensors, in which their responsive electrical conductance is used to perform quantitative analyses of biologically-relevant molecules such as DNA, proteins, ions and small molecules. This review provides a detailed evaluation of reported approaches in the design, operation and performance assessment of GFET biosensors. We first dissect key design elements of these devices, along with most common approaches for their fabrication. We compare possible modes of operation of GFETs as sensors, including transfer curves, output curves and time series as well as their integration in real-time or a posteriori protocols. Finally, we review performance metrics reported for the detection and quantification of bioanalytes, and discuss limitations and best practices to optimize the use of GFETs as bioanalytical sensors.
Assuntos
Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Grafite/química , Transistores EletrônicosRESUMO
The present study demonstrates the ability of excess, weakly amphiphilic n-alkanethiols (n = 4, 12, 18) and solvent composition to tune through a wide range of large-scale, macroscopic architectures formed by alkanethiol-capped Au nanoparticles (NPs). Both the alkanethiols and NPs are significantly hydrophobic species and compete for surface area at an air-water interface. When solutions of the two species are spread on a large (50 cm2) water surface in a Teflon well, a thin film forms and exhibits co-existing macroscopic regions with various distinct NP self-assembled architectures, namely a close packed monolayer, a network phase characterized by micron-sized pores (micropores) surrounded by quasi-linear bundles of nanoparticles, and finally aggregates. We hypothesize that the co-existence of various NP architectures results from fast, non-uniform evaporation across the large water surface. When solutions are instead deposited on a smaller (5 cm2) water surface contained within a Teflon ring to control the water surface curvature and the evaporation rate is slowed, we show for the first time that NPs form macroscopically uniform self-assemblies whose architectures can be tuned from monolayers â monolayers with micropores â extended micropore/NP bundle networks by varying excess alkanethiol concentration and solvent composition. We propose that competition between NPs and excess alkanethiols for water surface area, and alkanethiol self-assembly as well as solvent dewetting play important roles in the formation of the network phase, and discuss a potential mechanism for its formation.
RESUMO
Gold-thiol self-assembly is a widely employed strategy for engineering electronic devices using molecules and other nanostructures as building blocks. However, device behavior is expected to be governed by both building block architecture and contact effects. In order to elucidate the role of the latter in such devices, we have studied conductance of n-butanedithiol-linked Au nanoparticle (NP) films using different types of electrode configurations, namely, four-probe versus two-probe and break junctions before versus after dielectric break down of contact resistance. We find that contact resistance is governed by transport across a small barrier which can dominate device behavior when temperatures and resistances of the self-assembled devices are low. Accounting for such contact resistance reveals a more precise picture of device behavior in these regimes, including in the present system film properties near the onset of the percolation insulator-to-metal transition and beyond.
RESUMO
Using a prototypical nanoparticle-molecule assembly, namely alkanedithiol-linked gold nanoparticle films, we observe hallmark signatures of the Kondo effect in conductance vs. voltage as well as temperature measurements. Its contribution to temperature dependence of conductance is much larger than those from all other temperature-dependant effects up to 300 K by >20-fold - much larger than previous reports of the Kondo effect using other platforms. We find that previous models of the Kondo effect describe our data even in this regime. Given the synthetic control available over nanoparticle properties such as surface area, shape, and chemical composition, our work points to combining flexibility afforded by molecule + nanoparticle assemblies as a powerful way to generate materials exhibiting strong spin-electron interactions.