Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 221: 121450, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076073

RESUMO

The presence of wastewater and air pollution has become an important risk factor for citizens, not only in terms of problems related to health risks, but also because of its negative impact on the country's image. For this reason, malodorous emission monitoring and control techniques are in high demand in urban areas and industries. The aim of this work is first to build an electronic nose (e-nose) and a Voltammetric Electronic tongue (VE-tongue) in order to study their ability to discriminate between polluted and clean environmental samples. Secondly, Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS), and Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) are utilized to explain this discrimination by identifying specific compounds from these samples. Indeed, the e-nose, consisted of metal oxide semiconductor gas sensors, is used for the assessment of the studied odorous air and headspace samples from water and wastewater sites. Moreover, the VE-tongue, based on metal electrodes, is utilized to determine the patterns of the sensor array responses, which serve as fingerprints profiles of the analyzed liquid samples. Chemometric tools, such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Support Vector Machines (SVMs) are operated for the processing of data from the e-nose and the VE-tongue. By using the both systems, the analyses of headspace and liquid samples from the seven sites allow better discrimination. To explain the cause of the obtained discrimination, TD-GC-MS and SPME-GC-MS analyses are well performed to identify compounds related sites. According to these outcomes, the proposed e-nose and VE-tongue are proved to be rapid and valuable tools for analysis of environmental polluted matrices.

2.
Anal Bioanal Chem ; 395(7): 2313-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19787340

RESUMO

Traces of microbial volatile organic compounds (MVOCs) in air can indicate the presence of growth of moulds in the indoor environment. Ion-mobility spectrometry is a very promising method for detection of these MVOCs, because of its high sensitivity. For development of an in-situ method for detection of MVOCs, a portable ion-mobility spectrometer (IMS) was used and test gases of 14 MVOCs and their respective mixtures were investigated. IMS spectra were recorded as a function of concentration of MVOCs in air. Drift time and mobility of reactant ions formed in positive polarity mode were determined and correlated with the mass-to-charge ratio (m/z) of the MVOCs investigated. The estimated detection limit has a specific value for each MVOC and is in the range 3 to 96 microg m(-3) (1 to 52 ppb(V)). Indoor trials show that IMS can indicate hidden mould growth.


Assuntos
Bactérias/metabolismo , Análise Espectral/métodos , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA