Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972349

RESUMO

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente à Meticilina/metabolismo , Sinalização do Cálcio , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
2.
Allergy ; 78(5): 1204-1217, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36424895

RESUMO

BACKGROUND: Allergic diseases are triggered by signaling through the high-affinity IgE receptor, FcεRI. In both mast cells (MCs) and basophils, FcεRI is a tetrameric receptor complex comprising a ligand-binding α subunit (FcεRIα), a tetraspan ß subunit (FcεRIß, MS4A2) responsible for trafficking and signal amplification, and a signal transducing dimer of single transmembrane γ subunits (FcεRIγ). However, FcεRI also exists as presumed trimeric complexes that lack FcεRIß and are expressed on several cell types outside the MC and basophil lineages. Despite known differences between humans and mice in the presence of the trimeric FcεRI complex, questions remain as to how it traffics and whether it signals in the absence of FcεRIß. We have previously reported that targeting FcεRIß with exon-skipping oligonucleotides eliminates IgE-mediated degranulation in mouse MCs, but equivalent targeting in human MCs was not effective at reducing degranulation. RESULTS: Here, we report that the FcεRIß-like protein MS4A6A exists in human MCs and compensates for FcεRIß in FcεRI trafficking and signaling. Human MS4A6A promotes surface expression of FcεRI complexes and facilitates degranulation. MS4A6A and FcεRIß are encoded by highly related genes within the MS4A gene family that cluster within the human gene loci 11q12-q13, a region linked to allergy and asthma susceptibility. CONCLUSIONS: Our data suggest the presence of either FcεRIß or MS4A6A is sufficient for degranulation, indicating that MS4A6A could be an elusive FcεRIß-like protein in human MCs that performs compensatory functions in allergic disease.


Assuntos
Hipersensibilidade , Receptores de IgE , Animais , Humanos , Camundongos , Basófilos/metabolismo , Degranulação Celular , Éxons , Hipersensibilidade/metabolismo , Mastócitos/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Transdução de Sinais
3.
Mol Cell Biochem ; 476(5): 1965-1978, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33511551

RESUMO

Previously, we have reported that the coronary reactive hyperemic response was reduced in adenosine A2A receptor-null (A2AAR-/-) mice, and it was reversed by the soluble epoxide hydrolase (sEH) inhibitor. However, it is unknown in aortic vascular response, therefore, we hypothesized that A2AAR-gene deletion in mice (A2AAR-/-) affects adenosine-induced vascular response by increase in sEH and adenosine A1 receptor (A1AR) activities. A2AAR-/- mice showed an increase in sEH, AI AR and CYP450-4A protein expression but decrease in CYP450-2C compared to C57Bl/6 mice. NECA (adenosine-analog) and CCPA (adenosine A1 receptor-agonist)-induced dose-dependent vascular response was tested with t-AUCB (sEH-inhibitor) and angiotensin-II (Ang-II) in A2AAR-/- vs. C57Bl/6 mice. In A2AAR-/-, NECA and CCPA-induced increase in dose-dependent vasoconstriction compared to C57Bl/6 mice. However, NECA and CCPA-induced dose-dependent vascular contraction in A2AAR-/- was reduced by t-AUCB with NECA. Similarly, dose-dependent vascular contraction in A2AAR-/- was reduced by t-AUCB with CCPA. In addition, Ang-II enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR-/- with NECA. Similarly, the dose-dependent vascular contraction in A2AAR-/- was also enhanced by Ang-II with CCPA. Further, t-AUCB reduced Ang-II-enhanced NECA and CCPA-induced dose-dependent vascular contraction in A2AAR-/- mice. Our data suggest that the dose-dependent vascular contraction in A2AAR-/- mice depends on increase in sEH, A1AR and CYP4A protein expression.


Assuntos
Angiotensina II/farmacologia , Epóxido Hidrolases/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Epóxido Hidrolases/genética , Camundongos , Camundongos Knockout , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/genética , Vasoconstrição/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L202-L211, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29671604

RESUMO

Neuropilins are multifunctional receptors that play important roles in immune regulation. Neuropilin-2 (NRP2) is expressed in the lungs, but whether it regulates airway immune responses is unknown. Here, we report that Nrp2 is weakly expressed by alveolar macrophages (AMs) in the steady state but is dramatically upregulated following in vivo lipopolysaccharide (LPS) inhalation. Ex vivo treatment of human AMs with LPS also increased NRP2 mRNA expression and cell-surface display of NRP2 protein. LPS-induced Nrp2 expression in AMs was dependent upon the myeloid differentiation primary response 88 signaling pathway and the transcription factor NF-κB. In addition to upregulating display of NRP2 on the cell membrane, inhaled LPS also triggered AMs to release soluble NRP2 into the airways. Finally, myeloid-specific ablation of NRP2 resulted in increased expression of the chemokine (C-C motif) ligand 2 ( Ccl2) in the lungs and prolonged leukocyte infiltration in the airways following LPS inhalation. These findings suggest that NRP2 expression by AMs regulates LPS-induced inflammatory cell recruitment to the airways and reveal a novel role for NRP2 during innate immune responses in the lungs.


Assuntos
Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Neuropilina-2/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Administração por Inalação , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Imunidade Inata/genética , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Neuropilina-2/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
5.
Biol Blood Marrow Transplant ; 23(4): 569-580, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161607

RESUMO

Idiopathic pneumonia syndrome (IPS) is a noninfectious inflammatory disorder of the lungs that occurs most often after fully myeloablative allogeneic hematopoietic stem cell transplantation (HSCT). IPS can be severe and is associated with high 1-year mortality rates despite existing therapies. The canonical nuclear factor-(NF) κB signaling pathway has previously been linked to several inflammatory disorders of the lung, including asthma and lung allograft rejection. It has never been specifically targeted as a novel IPS treatment approach, however. Here, we report that the IκB kinase 2 (IKK2) antagonist BAY 65-5811 or "compound A," a highly potent and specific inhibitor of the NF-κB pathway, was able to improve median survival times and recipient oxygenation in a well-described mouse model of IPS. Compound A impaired the production of the proinflammatory chemokines CCL2 and CCL5 within the host lung after transplantation. This resulted in significantly lower numbers of donor lung infiltrating CD4+ and CD8+ T cells and reduced pulmonary inflammatory cytokine production after allograft. Compound A's beneficial effects appeared to be specific for limiting pulmonary injury, as the drug was unable to improve outcomes in a B6 into B6D2 haplotype-matched murine HSCT model in which recipient mice succumb to lethal acute graft-versus-host disease of the gastrointestinal tract. Collectively, our data suggest that the targeting of the canonical NF-κB pathway with a small molecule IKK2 antagonist may represent an effective and novel therapy for the specific management of acute lung injury that can occur after allogeneic HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Quinase I-kappa B/antagonistas & inibidores , Lesão Pulmonar/tratamento farmacológico , Terapia de Alvo Molecular/métodos , NF-kappa B/metabolismo , Pneumonia/tratamento farmacológico , Animais , Lesão Pulmonar/etiologia , Camundongos , Resultado do Tratamento
6.
Artigo em Inglês | MEDLINE | ID: mdl-28890385

RESUMO

Coronary reactive hyperemia (CRH) protects the heart against ischemia. Adenosine A2AAR-deficient (A2AAR-/-) mice have increased expression of soluble epoxide hydrolase (sEH); the enzyme responsible for breaking down the cardioprotective epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs). sEH-inhibition enhances CRH, increases EETs, and modulates oxylipin profiles. We investigated the changes of oxylipins and their impact on CRH in A2AAR-/- and wild type (WT) mice. We hypothesized that the attenuated CRH in A2AAR-/- mice is mediated by changes in oxylipin profiles, and that it can be reversed by either sEH- or ω-hydroxylases-inhibition. Compared to WT mice, A2AAR-/- mice had attenuated CRH and changed oxylipin profiles, which were consistent between plasma and heart perfusate samples, including decreased EET/DHET ratios, and increased hydroxyeicosatetraenoic acids (HETEs). Plasma oxylipns in A2AAR-/- mice indicated an increased proinflammatory state including increased ω-terminal HETEs, decreased epoxyoctadecaenoic/dihydroxyoctadecaenoic acids (EpOMEs/DiHOMEs) ratios, increased 9-hydroxyoctadecadienoic acid, and increased prostanoids. Inhibition of either sEH or ω-hydroxylases reversed the reduced CRH in A2AAR-/- mice. In WT and sEH-/- mice, blocking A2AAR decreased CRH. These data demonstrate that A2AAR-deletion was associated with changes in oxylipin profiles, which may contribute to the attenuated CRH. Also, inhibition of sEH and ω-hydroxylases reversed the reduction in CRH.


Assuntos
Vasos Coronários/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Hiperemia/tratamento farmacológico , Hiperemia/metabolismo , Oxilipinas/sangue , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/química , Hiperemia/sangue , Camundongos , Camundongos Endogâmicos C57BL , Solubilidade , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/uso terapêutico
8.
J Pharmacol Exp Ther ; 356(3): 673-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718241

RESUMO

Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction.


Assuntos
Artérias/fisiologia , Receptor A2B de Adenosina/fisiologia , Vasodilatação/fisiologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Artérias/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Períneo/irrigação sanguínea , Vasodilatação/efeitos dos fármacos
9.
Purinergic Signal ; 11(2): 263-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911169

RESUMO

Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 µM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.


Assuntos
Vasos Coronários/efeitos dos fármacos , Miocárdio/metabolismo , NADPH Oxidases/metabolismo , Receptor A2A de Adenosina/metabolismo , Aminopiridinas/farmacologia , Animais , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2B de Adenosina/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
10.
Am J Physiol Heart Circ Physiol ; 307(7): H1046-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108010

RESUMO

We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 µM) nor selective A2AAR blockade by SCH-58261 (1 µM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 µM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 µM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.


Assuntos
Circulação Coronária , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sequestradores de Radicais Livres/farmacologia , Glibureto/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Hiperemia/fisiopatologia , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Pirimidinas/farmacologia , Receptores Purinérgicos P1/genética , Teofilina/análogos & derivados , Teofilina/farmacologia , Triazóis/farmacologia
11.
J Immunol ; 188(6): 2884-93, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22323538

RESUMO

The contribution of NLRP3, a member of the nucleotide-binding domain leucine-rich repeat-containing (NLR) family, to the development of allergic airway disease is currently controversial. In this study, we used multiple allergic asthma models to examine the physiologic role of NLRP3. We found no significant differences in airway eosinophilia, histopathologic condition, mucus production, and airway hyperresponsiveness between wild-type and Nlrp3(-/-) mice in either acute (alum-dependent) or chronic (alum-independent) OVA models. In addition to the OVA model, we did not detect a role for NLRP3 in the development of allergic airway disease induced by either acute or chronic house dust mite Ag exposure. Although we did not observe significant phenotypic differences in any of the models tested, we did note a significant reduction of IL-13 and IL-33 in Nlrp3(-/-) mice compared with wild-type controls in the chronic OVA model without added alum. In all of the allergic airway disease models, the NLRP3 inflammasome-associated cytokines IL-1ß and IL-18 in the lung were below the level of detection. In sum, this report surveyed four different allergic asthma models and found a modest and selected role for NLRP3 in the alum-free OVA model. However, this difference did not greatly alter the clinical outcome of the disease. This finding suggests that the role of NLRP3 in allergic asthma must be re-evaluated.


Assuntos
Asma/metabolismo , Proteínas de Transporte/metabolismo , Animais , Asma/imunologia , Proteínas de Transporte/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ovalbumina/toxicidade
12.
J Exp Med ; 204(1): 117-28, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17200408

RESUMO

Antigen-mediated cross-linking of IgE bound to mast cells via the high affinity receptor for IgE triggers a signaling cascade that results in the release of intracellular calcium stores, followed by an influx of extracellular calcium. The collective increase in intracellular calcium is critical to the release of the granular contents of the mast cell, which include the mediators of acute anaphylaxis. We show that the sensitivity of the mast cell to antigen-mediated degranulation through this pathway can be dramatically influenced by the A2b adenosine receptor. Loss of this Gs-coupled receptor on mouse bone marrow-derived mast cells results in decreased basal levels of cyclic AMP and an excessive influx of extracellular calcium through store-operated calcium channels following antigen activation. Mice lacking the A2b receptor display increased sensitivity to IgE-mediated anaphylaxis. Collectively, these findings show that the A2b adenosine receptor functions as a critical regulator of signaling pathways within the mast cell, which act in concert to limit the magnitude of mast cell responsiveness when antigen is encountered.


Assuntos
Mastócitos/imunologia , Mastócitos/fisiologia , Receptor A2B de Adenosina/deficiência , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Antígenos/administração & dosagem , Bucladesina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Técnicas In Vitro , Interleucina-6/biossíntese , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2B de Adenosina/genética , Receptores de IgE/metabolismo , Transdução de Sinais
13.
Am J Physiol Heart Circ Physiol ; 305(11): H1668-79, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043252

RESUMO

We previously demonstrated that A2A, but not A2B, adenosine receptors (ARs) mediate coronary reactive hyperemia (RH), possibly by producing H2O2 and, subsequently, opening ATP-dependent K(+) (KATP) channels in coronary smooth muscle cells. In this study, A1 AR knockout (KO), A3 AR KO, and A1 and A3 AR double-KO (A1/A3 DKO) mice were used to investigate the roles and mechanisms of A1 and A3 ARs in modulation of coronary RH. Coronary flow of isolated hearts was measured using the Langendorff system. A1 KO and A1/A3 DKO, but not A3 KO, mice showed a higher flow debt repayment [~30% more than wild-type (WT) mice, P < 0.05] following a 15-s occlusion. SCH-58261 (a selective A2A AR antagonist, 1 µM) eliminated the augmented RH, suggesting the involvement of enhanced A2A AR-mediated signaling in A1 KO mice. In isolated coronary arteries, immunohistochemistry showed an upregulation of A2A AR (1.6 ± 0.2 times that of WT mice, P < 0.05) and a higher magnitude of adenosine-induced H2O2 production in A1 KO mice (1.8 ± 0.3 times that of WT mice, P < 0.05), which was blocked by SCH-58261. Catalase (2,500 U/ml) and glibenclamide (a KATP channel blocker, 5 µM), but not N(G)-nitro-l-arginine methyl ester, also abolished the enhanced RH in A1 KO mice. Our data suggest that A1, but not A3, AR counteracts the A2A AR-mediated CF increase and that deletion of A1 AR results in upregulation of A2A AR and/or removal of the negative modulatory effect of A1 AR, thus leading to an enhanced A2A AR-mediated H2O2 production, KATP channel opening, and coronary vasodilation during RH. This is the first report implying that A1 AR has a role in coronary RH.


Assuntos
Circulação Coronária , Vasos Coronários/metabolismo , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Vasodilatação , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Feminino , Hiperemia/genética , Hiperemia/fisiopatologia , Canais KATP/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
14.
Am J Physiol Heart Circ Physiol ; 304(10): H1294-301, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525711

RESUMO

Myocardial metabolites such as adenosine mediate reactive hyperemia, in part, by activating ATP-dependent K(+) (K(ATP)) channels in coronary smooth muscle. In this study, we investigated the role of adenosine A(2A) and A(2B) receptors and their signaling mechanisms in reactive hyperemia. We hypothesized that coronary reactive hyperemia involves A(2A) receptors, hydrogen peroxide (H(2)O(2)), and KATP channels. We used A(2A) and A(2B) knockout (KO) and A(2A/2B) double KO (DKO) mouse hearts for Langendorff experiments. Flow debt for a 15-s occlusion was repaid 128 ± 8% in hearts from wild-type (WT) mice; this was reduced in hearts from A(2A) KO and A(2A)/(2B) DKO mice (98 ± 9 and 105 ± 6%; P < 0.05), but not A(2B) KO mice (123 ± 13%). Patch-clamp experiments demonstrated that adenosine activated glibenclamide-sensitive KATP current in smooth muscle cells from WT and A(2B) KO mice (90 ± 23% of WT) but not A(2A) KO or A(2A)/A(2B) DKO mice (30 ± 4 and 35 ± 8% of WT; P < 0.05). Additionally, H(2)O(2) activated KATP current in smooth muscle cells (358 ± 99%; P < 0.05). Catalase, an enzyme that breaks down H(2)O(2), attenuated adenosine-induced coronary vasodilation, reducing the percent increase in flow from 284 ± 53 to 89 ± 13% (P < 0.05). Catalase reduced the repayment of flow debt in hearts from WT mice (84 ± 9%; P < 0.05) but had no effect on the already diminished repayment in hearts from A(2A) KO mice (98 ± 7%). Our findings suggest that adenosine A(2A) receptors are coupled to smooth muscle KATP channels in reactive hyperemia via the production of H(2)O(2) as a signaling intermediate.


Assuntos
Vasos Coronários/fisiologia , Peróxido de Hidrogênio/metabolismo , Hiperemia/fisiopatologia , Canais KATP/fisiologia , Receptor A2A de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Adenosina/farmacologia , Animais , Catalase/metabolismo , Circulação Coronária/efeitos dos fármacos , Circulação Coronária/fisiologia , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Técnicas de Patch-Clamp , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/fisiologia , Vasodilatadores/farmacologia
15.
J Pharmacol Exp Ther ; 344(2): 426-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23149337

RESUMO

Mast cell activation results in the immediate release of proinflammatory mediators prestored in cytoplasmic granules, as well as initiation of lipid mediator production and cytokine synthesis by these resident tissue leukocytes. Allergen-induced mast cell activation is central to the pathogenesis of asthma and other allergic diseases. Presently, most pharmacological agents for the treatment of allergic disease target receptors for inflammatory mediators. Many of these mediators, such as histamine, are released by mast cells. Targeting pathways that limit antigen-induced mast cell activation may have greater therapeutic efficacy by inhibiting the synthesis and release of many proinflammatory mediators produced in the mast cell. In vitro studies using cultured human and mouse mast cells, and studies of mice lacking A(2B) receptors, suggest that adenosine receptors, specifically the G(s)-coupled A(2A) and A(2B) receptors, might provide such a target. Here, using a panel of mice lacking various combinations of adenosine receptors, and mast cells derived from these animals, we show that adenosine receptor agonists provide an effective means of inhibition of mast cell degranulation and induction of cytokine production both in vitro and in vivo. We identify A(2B) as the primary receptor limiting mast cell degranulation, whereas the combined activity of A(2A) and A(2B) is required for the inhibition of cytokine synthesis.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Mastócitos/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Animais , Antígenos/farmacologia , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Dinitrofenóis/farmacologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anafilaxia Cutânea Passiva/imunologia , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Albumina Sérica/farmacologia
16.
J Cardiovasc Pharmacol ; 61(1): 70-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23288107

RESUMO

Concentration-response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10 to 10 M) and NECA (10 to 10 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10 to 10 and NECA at 10 to 10 M. The CCPA induced a significant constriction at 10 and 10 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10 to 10 M) in WT and no response in A2BKO except at 10 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10 M of L-NAME, 10 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs.


Assuntos
Artérias Mesentéricas/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas do Receptor Purinérgico P1/farmacologia , RNA Mensageiro/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/deficiência , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/genética , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
17.
J Infect Dis ; 205(5): 807-17, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279123

RESUMO

Staphylococcus aureus is a dangerous pathogen that can cause necrotizing infections characterized by massive inflammatory responses and tissue destruction. Staphylococcal α-hemolysin is an essential virulence factor in severe S. aureus pneumonia. It activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome to induce production of interleukin-1ß and programmed necrotic cell death. We sought to determine the role of α-hemolysin-mediated activation of NLRP3 in the pathogenesis of S. aureus pneumonia. We show that α-hemolysin activates the NLRP3 inflammasome during S. aureus pneumonia, inducing necrotic pulmonary injury. Moreover, Nlrp3(-/-) mice have less-severe pneumonia. Pulmonary injury induced by isolated α-hemolysin or live S. aureus is independent of interleukin-1ß signaling, implicating NLRP3-induced necrosis in the pathogenesis of severe infection. This work demonstrates the exploitation of host inflammatory signaling by S. aureus and suggests the NLRP3 inflammasome as a potential target for pharmacologic interventions in severe S. aureus infections.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Pneumonia Estafilocócica/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Toxinas Bacterianas/farmacologia , Antígeno CD11b , Proteínas de Transporte/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas Hemolisinas/farmacologia , Inflamassomos/genética , Estimativa de Kaplan-Meier , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Necrose/microbiologia , Transdução de Sinais , Staphylococcus aureus/metabolismo
18.
Laryngoscope ; 133(9): 2095-2103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36576070

RESUMO

OBJECTIVE: Viral acute rhinosinusitis (ARS) is the leading cause of work and school absence and antibiotic over-prescription. There are limited treatment options available to ameliorate the symptoms caused by viral ARS. We have previously demonstrated that topical adenosine treatment enhances mucociliary clearance in the sino-nasal tract. Here, we assessed the therapeutic potential of topical adenosine in a mouse model of viral ARS. METHODS: The effect of topical adenosine on inflammatory response and mucin gene expression was examined in a mouse model of viral ARS induced by respiratory syncytial virus (RSV) nasal-only infection. We also investigated the inflammatory effect of both endogenous and exogenous adenosine in the sino-nasal tract. RESULTS: Topical adenosine significantly inhibited the expression of pro-inflammatory cytokines, goblet hyperplasia, mucin expression, and cell damage in the nose of mice with viral ARS. This treatment did not prolong virus clearance. This inhibitory effect was primarily mediated by the A2A adenosine receptor (AR). Although previous studies have shown that adenosine induces a robust inflammatory response in the lungs, neither endogenous nor exogenous adenosine produced inflammation in the sino-nasal tract. Instead, exogenous adenosine inhibited the baseline expression of TNF and IL-1ß in the nose. Additionally, baseline expression of ARs was lower in the nose than that in the trachea and lungs. CONCLUSION: We demonstrated that intranasal adenosine administration effectively decreased inflammation and mucus production in a mouse model of viral ARS. LEVEL OF EVIDENCE: N/A Laryngoscope, 133:2095-2103, 2023.


Assuntos
Adenosina , Sinusite , Camundongos , Animais , Adenosina/farmacologia , Adenosina/uso terapêutico , Inflamação/tratamento farmacológico , Sinusite/diagnóstico , Mucinas/metabolismo , Modelos Animais de Doenças , Muco/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 303(10): R1003-10, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23019210

RESUMO

Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) mediates aortic relaxation via cytochrome P-450 (CYP)-epoxygenases. However, the signaling mechanism is not understood properly. We hypothesized that ATP-sensitive K(+) (K(ATP)) channels play an important role in A(2A)AR-mediated relaxation. Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Aortic rings from WT and A(2A) knockout (KO) mice were precontracted with submaximal dose of phenylephrine (PE, 10(-6) M), and concentration-response curves for pinacidil, cromakalim (nonselective K(ATP) openers), and diazoxide (mitochondrial K(ATP) opener) were obtained. Diazoxide did not have any relaxation effect on PE-precontracted tissues, whereas relaxation to pinacidil (48.09 ± 5.23% in WT vs. 25.41 ± 2.73% in A(2A)KO; P < 0.05) and cromakalim (51.19 ± 2.05% in WT vs. 38.50 ± 2.26% in A(2A)KO; P < 0.05) was higher in WT than A(2A)KO aorta. This suggested the involvement of sarcolemmal rather than mitochondrial K(ATP) channels. Endothelium removal, treatment with SCH 58651 (A(2A)AR antagonist; 10(-6) M), N(G)-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase inhibitor) and methylsulfonyl-propargyloxyphenylhexanamide (MS-PPOH, CYP-epoxygenases inhibitor; 10(-5) M) significantly reduced pinacidil-induced relaxation in WT compared with controls, whereas these treatments did not have any effect in A(2A)KO aorta. Glibenclamide (K(ATP) channel inhibitor, 10(-5) M) blocked 2-p-(2-carboxyethyl)phenethylamino-5'N-ethylcarboxamido adenosine hydrochloride (CGS 21680, A(2A)AR agonist)-induced relaxation in WT and changed 5'-N-ethylcarboxamide (NECA) (nonselective adenosine analog)-induced response to higher contraction in WT and A(2A)KO. 5-Hydroxydecanoate (5-HD, mitochondrial K(ATP) channel inhibitor, 10(-4) M) had no effect on CGS 21680-mediated response in WT aorta. Our data suggest that A(2A)AR-mediated vasorelaxation occurs through opening of sarcolemmal K(ATP) channels via CYP-epoxygenases and possibly, nitric oxide, contributing to pinacidil-induced responses.


Assuntos
Oxirredutases do Álcool/fisiologia , Oxirredutases/metabolismo , Receptor A2A de Adenosina/metabolismo , Sarcolema/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Cromakalim , Ácidos Decanoicos/farmacologia , Feminino , Glibureto/farmacologia , Hidroxiácidos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/genética , Fenetilaminas/farmacologia , Pinacidil
20.
Am J Physiol Regul Integr Comp Physiol ; 302(4): R400-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160543

RESUMO

Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was significantly higher in WT. CCPA (10(-6) M) increased the protein expression of PKC-α and phosphorylated-ERK1/2, while HET0016 significantly reduced the CCPA-induced increase in expression of these proteins. These data suggest that, in the absence of A(2A)AR, Cyp4a induces vasoconstriction through MAPK via upregulation of A(1)AR and PKC-α.


Assuntos
Adenosina/farmacologia , Aorta/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptor A2A de Adenosina/fisiologia , Vasodilatadores/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Aorta/fisiologia , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP4A/genética , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteína Quinase C/metabolismo , Proteína Quinase C/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA