RESUMO
Ototoxicity is a common side effect of platinum treatment and manifests as irreversible, high-frequency sensorineural hearing loss. Genetic association studies have suggested a role for SNPs in genes related to the disposition of cisplatin or deafness. In this study, 429 pediatric patients that were treated with cisplatin were genotyped for 10 candidate SNPs. Logistic regression analyses revealed that younger age at treatment (≤5 years vs >15 years: OR: 9.1; 95% CI: 3.8-21.5; P = 5.6 × 10-7) and higher cumulative dose of cisplatin (>450 vs ≤300 mg/m2: OR: 2.4; 95% CI: 1.3-4.6; P = 0.007) confer a significant risk of ototoxicity. Of the SNPs investigated, none of them were significantly associated with an increase of ototoxicity. In the meta-analysis, ACYP2 rs1872328 (OR: 3.94; 95% CI: 1.04-14.03; P = 0.04) and SLC22A2 rs316019 (OR: 1.46; 95% CI: 1.07-2.00; P = 0.02) were associated with ototoxicity. In order to increase the understanding of the association between SNPs and ototoxicity, we propose a polygenic model, which takes into account multiple interacting genes of the cisplatin pathway that together confer an increased risk of ototoxicity.
Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Estudos de Associação Genética/métodos , Variação Genética/genética , Internacionalidade , Ototoxicidade/genética , Adolescente , Criança , Pré-Escolar , Feminino , Perda Auditiva/induzido quimicamente , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Humanos , Lactente , Recém-Nascido , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/epidemiologia , Neoplasias/genética , Ototoxicidade/epidemiologia , Estudos Retrospectivos , Adulto JovemRESUMO
Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The PanCareLIFE cross-sectional cohort study evaluated the genetic associations in a large pan-European population and assessed the diagnostic accuracy of the genetic markers. 1,112 pediatric cancer survivors who had provided biomaterial for genotyping were screened for participation in the pharmacogenetic association study. 900 participants qualified for inclusion. Based on the assessment of original audiograms, patients were assigned to three phenotype categories: no, minor, and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1, and ACYP2) were genotyped. The genotype and phenotype data represent a resource for conducting meta-analyses to derive a more precise pooled estimate of the effects of genes on the risk of hearing loss due to platinum treatment.
RESUMO
BACKGROUND: Irreversible sensorineural hearing loss is a common side effect of platinum treatment with the potential to significantly impair the neurocognitive, social and educational development of childhood cancer survivors. Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The aim of this cross-sectional cohort study was to confirm the genetic associations in a large pan-European population and to evaluate the diagnostic accuracy of the genetic markers. METHODS: Eligibility criteria required patients to be aged less than 19 years at the start of chemotherapy, which had to include cisplatin and/or carboplatin. Patients were assigned to three phenotype categories: no, minor and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1 and ACYP2) were investigated. Multinomial logistic regression was performed to model the relationship between genetic predictors and platinum ototoxicity, adjusting for clinical risk factors. Additionally, measures of the diagnostic accuracy of the genetic markers were determined. RESULTS: 900 patients were included in this study. In the multinomial logistic regression, significant unique contributions were found from SLC22A2 rs316019, the age at the start of platinum treatment, cranial radiation and the interaction term [platinum compound]∗[cumulative dose of cisplatin]. The predictive performance of the genetic markers was poor compared with the clinical risk factors. CONCLUSIONS: PanCareLIFE is the largest study of cisplatin-induced ototoxicity to date and confirmed a role for the polyspecific organic cation transporter SLC22A2. However, the predictive value of the current genetic candidate markers for clinical use is negligible, which puts the value of clinical factors for risk assessment of cisplatin-induced ototoxicity back into the foreground.
Assuntos
Antineoplásicos/efeitos adversos , Sobreviventes de Câncer , Carboplatina/efeitos adversos , Cisplatino/efeitos adversos , Perda Auditiva Neurossensorial/genética , Audição/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Transportador 2 de Cátion Orgânico/genética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Adolescente , Idade de Início , Criança , Pré-Escolar , Estudos Transversais , Europa (Continente) , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino , Ototoxicidade , Testes Farmacogenômicos , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco , Fatores de RiscoRESUMO
Receptor tyrosine kinases (RTKs) have provided molecular targets for the development of novel, prognosis-improving agents in many cancers; however, resistances to these therapies occur. On the cellular level, one resistance mechanism is attributed to functional RTK redundancies and compensatory cross-signaling, leading to perception of RTKs as signaling and target networks. To provide a basis for better exploitation of this network in Ewing sarcoma, we generated comprehensive qPCR gene expression profiles of RTKs in Ewing sarcoma cell lines and 21 untreated primary tumors. Key findings confirm broad-spectrum RTK expressions with potential for signaling redundancy. Profile analyses with regard to patient risk-group further revealed several individual RTKs of interest. Among them, VEGFR3 and TIE1 showed high-level expressions and also were suggestive of poor prognosis in localized tumors; underscoring the relevance of angiogenic signaling pathways and tumor-stroma interactions in Ewing sarcoma. Of note, compared to localized disease, tumors derived from metastatic disease were marked by global high-level RTK expressions. Nine individual RTKs were significantly over-expressed, suggesting contributions to molecular mechanisms of metastasis. Of these, ROR1 is being pursued as therapeutic target in leukemias and carcinomas, but un-characterized in sarcomas. We demonstrate expression of ROR1 and its putative ligand Wnt5a in Ewing sarcomas, and of an active ROR1 protein variant in cell lines. ROR1 silencing impaired cell migration in vitro. Therefore, ROR1 calls for further evaluation as a therapeutic target in metastatic Ewing sarcoma; and described as a pseudo-kinase with several isoforms, underlines these additional complexities arising in our understanding of RTK signaling networks.