Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(10): 3122-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713349

RESUMO

Gene knockout (KO) does not always result in phenotypic changes, possibly due to mechanisms of functional compensation. We have studied mice lacking cGMP-dependent kinase II (cGKII), which phosphorylates GluA1, a subunit of AMPA receptors (AMPARs), and promotes hippocampal long-term potentiation (LTP) through AMPAR trafficking. Acute cGKII inhibition significantly reduces LTP, whereas cGKII KO mice show no LTP impairment. Significantly, the closely related kinase, cGKI, does not compensate for cGKII KO. Here, we describe a previously unidentified pathway in the KO hippocampus that provides functional compensation for the LTP impairment observed when cGKII is acutely inhibited. We found that in cultured cGKII KO hippocampal neurons, cGKII-dependent phosphorylation of inositol 1,4,5-trisphosphate receptors was decreased, reducing cytoplasmic Ca(2+) signals. This led to a reduction of calcineurin activity, thereby stabilizing GluA1 phosphorylation and promoting synaptic expression of Ca(2+)-permeable AMPARs, which in turn induced a previously unidentified form of LTP as a compensatory response in the KO hippocampus. Calcineurin-dependent Ca(2+)-permeable AMPAR expression observed here is also used during activity-dependent homeostatic synaptic plasticity. Thus, a homeostatic mechanism used during activity reduction provides functional compensation for gene KO in the cGKII KO hippocampus.


Assuntos
Cálcio/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Hipocampo/enzimologia , Receptores de AMPA/metabolismo , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase/efeitos dos fármacos , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Fosforilação , Sinapses/enzimologia , Sinapses/metabolismo , Tetrodotoxina/farmacologia
2.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554493

RESUMO

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Animais , Proteínas de Transporte , Condicionamento Operante/fisiologia , Dopamina beta-Hidroxilase/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Locomoção/fisiologia , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Fosfoproteínas/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
3.
Neurobiol Learn Mem ; 114: 32-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24752151

RESUMO

Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.


Assuntos
Ansiedade/genética , Comportamento Animal/fisiologia , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Memória de Curto Prazo/fisiologia , Animais , Ansiedade/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Fosforilação
4.
Neurobiol Learn Mem ; 99: 32-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103773

RESUMO

Activity-dependent trafficking of AMPA receptors to synapses regulates synaptic strength. Activation of the NMDA receptor induces several second messenger pathways that contribute to receptor trafficking-dependent plasticity, including the NO pathway, which elevates cGMP. In turn, cGMP activates the cGMP-dependent protein kinase type II (cGKII), which phosphorylates the AMPA receptor subunit GluA1 at serine 845, a critical step facilitating synaptic delivery in the mechanism of activity-dependent synaptic potentiation. Since cGKII is expressed in the striatum, amygdala, cerebral cortex, and hippocampus, it has been proposed that mice lacking cGKII may present phenotypic differences compared to their wild-type littermates in emotion-dependent tasks, learning and memory, and drug reward salience. Previous studies have shown that cGKII KO mice ingest higher amounts of ethanol as well as exhibit elevated anxiety levels compared to wild-type (WT) littermates. Here, we show that cGKII KO mice are significantly deficient in spatial learning while exhibiting facilitated motor coordination, demonstrating a clear dependence of memory-based tasks on cGKII. We also show diminished GluA1 phosphorylation in the postsynaptic density (PSD) of cGKII KO prefrontal cortex while in hippocampal PSD fractions, phosphorylation was not significantly altered. These data suggest that the role of cGKII may be more robust in particular brain regions, thereby impacting complex behaviors dependent on these regions differently.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Destreza Motora/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Hipocampo/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/fisiologia , Densidade Pós-Sináptica/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod , Filtro Sensorial
5.
J Neurosci ; 27(13): 3445-55, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17392461

RESUMO

Postsynaptic nitric oxide (NO) production affects synaptic plasticity and neuronal cell death. Ca2+ fluxes through the NMDA receptor (NMDAR) stimulate the production of NO by neuronal nitric oxide synthase (nNOS). However, the mechanisms by which nNOS activity is regulated are poorly understood. We evaluated the effect of neuronal stimulation with glutamate on the phosphorylation of nNOS. We show that, in cortical neurons, a low glutamate concentration (30 microM) induces rapid and transient NMDAR-dependent phosphorylation of S1412 by Akt, followed by sustained phosphorylation of S847 by CaMKII (calcium-calmodulin-dependent kinase II). We demonstrate that phosphorylation of S1412 by Akt is necessary for activation of nNOS by the NMDAR. nNOS mutagenesis confirms that these phosphorylations respectively activate and inhibit nNOS and, thus, transiently activate NO production. A constitutively active (S1412D), but not a constitutively repressed (S847D) nNOS mutant elevated surface glutamate receptor 2 levels, demonstrating that these phosphorylations can control AMPA receptor trafficking via NO. Notably, an excitotoxic stimulus (150 microM glutamate) induced S1412, but not S847 phosphorylation, leading to deregulated nNOS activation. S1412D did not kill neurons; however, it enhanced the excitotoxicity of a concomitant glutamate stimulus. We propose a swinging domain model for the regulation of nNOS: S1412 phosphorylation facilitates electron flow within the reductase module of nNOS, increasing nNOS sensitivity to Ca2+-calmodulin. These findings suggest a critical role for a kinetically complex and novel series of regulatory nNOS phosphorylations induced by the NMDA receptor for the in vivo control of nNOS.


Assuntos
Morte Celular/fisiologia , Neurônios/enzimologia , Óxido Nítrico Sintase/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Fosforilação , Transporte Proteico/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA