RESUMO
Cytoglobin is a heme protein evolutionarily related to hemoglobin and myoglobin. Cytoglobin is expressed ubiquitously in mammalian tissues; however, its physiological functions are yet unclear. Phylogenetic analyses indicate that the cytoglobin gene is highly conserved in vertebrate clades, from fish to reptiles, amphibians, birds, and mammals. Most proposed roles for cytoglobin require the maintenance of a pool of reduced cytoglobin (FeII). We have shown previously that the human cytochrome b5/cytochrome b5 reductase system, considered a quintessential hemoglobin/myoglobin reductant, can reduce human and zebrafish cytoglobins ≤250-fold faster than human hemoglobin or myoglobin. It was unclear whether this reduction of zebrafish cytoglobins by mammalian proteins indicates a conserved pathway through vertebrate evolution. Here, we report the reduction of zebrafish cytoglobins 1 and 2 by the zebrafish cytochrome b5 reductase and the two zebrafish cytochrome b5 isoforms. In addition, the reducing system also supports reduction of Globin X, a conserved globin in fish and amphibians. Indeed, the zebrafish reducing system can maintain a fully reduced pool for both cytoglobins, and both cytochrome b5 isoforms can support this process. We determined the P50 for oxygen to be 0.5 Torr for cytoglobin 1 and 4.4 Torr for cytoglobin 2 at 25 °C. Thus, even at low oxygen tensions, the reduced cytoglobins may exist in a predominant oxygen-bound form. Under these conditions, the cytochrome b5/cytochrome b5 reductase system can support a conserved role for cytoglobins through evolution, providing electrons for redox signaling reactions such as nitric oxide dioxygenation, nitrite reduction, and phospholipid oxidation.
Assuntos
Evolução Biológica , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Citoglobina/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Animais , Citocromo-B(5) Redutase/genética , Citocromos b5/genética , Citoglobina/genética , Ativação Enzimática/fisiologia , NAD/genética , Ligação Proteica/fisiologia , Peixe-ZebraRESUMO
Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype.
Assuntos
Arginina , Diferenciação Celular , Histonas , Mutação , Neoplasias , Complexo Repressor Polycomb 2 , Histonas/metabolismo , Histonas/genética , Diferenciação Celular/genética , Arginina/metabolismo , Animais , Humanos , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Cromatina/metabolismo , Epigênese Genética , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular TumoralRESUMO
I.v. administration of a high-affinity carbon monoxide-binding (CO-binding) molecule, recombinant neuroglobin, can improve survival in CO poisoning mouse models. The current study aims to discover how biochemical variables of the scavenger determine the CO removal from the RBCs by evaluating 3 readily available hemoproteins, 2,3-diphosphoglycerate stripped human hemoglobin (StHb); N-ethylmaleimide modified hemoglobin (NEMHb); and equine myoglobin (Mb). These molecules efficiently sequester CO from hemoglobin in erythrocytes in vitro. A kinetic model was developed to predict the CO binding efficacy for hemoproteins, based on their measured in vitro oxygen and CO binding affinities, suggesting that the therapeutic efficacy of hemoproteins for CO poisoning relates to a high M value, which is the binding affinity for CO relative to oxygen (KA,CO/KA,O2). In a lethal CO poisoning mouse model, StHb, NEMHb, and Mb improved survival by 100%, 100%, and 60%, respectively, compared with saline controls and were well tolerated in 48-hour toxicology assessments. In conclusion, both StHb and NEMHb have high CO binding affinities and M values, and they scavenge CO efficiently in vitro and in vivo, highlighting their therapeutic potential for point-of-care antidotal therapy of CO poisoning.
Assuntos
Intoxicação por Monóxido de Carbono , Camundongos , Animais , Cavalos , Humanos , Intoxicação por Monóxido de Carbono/terapia , Monóxido de Carbono/metabolismo , Oxigênio/metabolismo , Hemoglobinas , Cinética , Modelos Animais de DoençasRESUMO
A large outbreak of novel influenza A (H1N1) virus (swine origin influenza virus [S-OIV]) infection in Milwaukee, WI, occurred in late April 2009. We had recently developed a rapid multiplex reverse transcription-PCR enzyme hybridization assay (FluPlex) to determine the type (A or B) and subtype (H1, H2, H3, H5, H7, H9, N1 [human], N1 [animal], N2, or N7) of influenza viruses, and this assay was used to confirm the diagnoses for the first infected patients in the state. The analytical sensitivity was excellent at 1.5 to 116 copies/reaction, or 10(-3) to 10(-1) 50% tissue culture infective doses/ml. The testing of all existing hemagglutinin and neuraminidase subtypes of influenza A virus and influenza B virus (41 influenza virus strains) and 24 common respiratory pathogens showed only one low-level H3 cross-reaction with an H10N7 avian strain and only at 5.2 x 10(6) copies/reaction, not at lower concentrations. Comparisons of the FluPlex results with results from multiple validated in-house molecular assays, CDC-validated FDA-approved assays, and gene sequencing demonstrated 100% positive agreement for the typing of 179 influenza A viruses and 3 influenza B viruses, the subtyping of 110 H1N1 (S-OIV; N1 [animal]), 62 H1N1 (human), and 6 H3N2 (human) viruses, and the identification of 24 negative clinical samples and 100% negative agreement for all viruses tested except H1N1 (human) (97.7%). The small number of false-positive H1N1 (human) samples most likely represent increased sensitivity over that of other in-house assays, with four of four results confirmed by the CDC's influenza virus subtyping assay. The FluPlex is a rapid, inexpensive, sensitive, and specific method for the typing and subtyping of influenza viruses and demonstrated outstanding utility during the first 2 weeks of an S-OIV infection outbreak. Methods for rapid detection and broad subtyping of influenza viruses, including animal subtypes, are needed to address public concern over the emergence of pandemic strains. Attempts to automate this assay are ongoing.
Assuntos
Surtos de Doenças , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adulto , Criança , Pré-Escolar , Reações Cruzadas , Primers do DNA/genética , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Sensibilidade e Especificidade , Wisconsin/epidemiologia , Adulto JovemRESUMO
Community-acquired pneumonia (CAP) and sepsis are important causes of morbidity and mortality. We describe the development of two molecular assays for the detection of 11 common viral and bacterial agents of CAP and sepsis: influenza virus A, influenza virus B, respiratory syncytial virus A (RSV A), RSV B, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Legionella micdadei, Bordetella pertussis, Staphylococcus aureus, and Streptococcus pneumoniae. Further, we report the prevalence of carriage of these pathogens in respiratory, skin, and serum specimens from 243 asymptomatic children and adults. The detection of pathogens was done using both a manual enzyme hybridization assay and an automated electronic microarray following reverse transcription and PCR amplification. The analytical sensitivities ranged between 0.01 and 100 50% tissue culture infective doses, cells, or CFU per ml for both detection methods. Analytical specificity testing demonstrated no significant cross-reactivity among 19 other common respiratory organisms. One hundred spiked "surrogate" clinical specimens were all correctly identified with 100% specificity (95% confidence interval, 100%). Overall, 28 (21.7%) of 129 nasopharyngeal specimens, 11 of 100 skin specimens, and 2 of 100 serum specimens from asymptomatic subjects tested positive for one or more pathogens, with S. pneumoniae and S. aureus giving 89% of the positive results. Our data suggest that asymptomatic carriage makes the use of molecular assays problematic for the detection of S. pneumoniae or S. aureus in upper respiratory tract secretions; however, the specimens tested showed virtually no carriage of the other nine viral and bacterial pathogens, and the detection of these pathogens should not be a significant diagnostic problem. In addition, slightly less sensitive molecular assays may have better correlation with clinical disease in the case of CAP.
Assuntos
Pneumonia Bacteriana/diagnóstico , Pneumonia Viral/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sepse/diagnóstico , Adolescente , Adulto , Portador Sadio/diagnóstico , Criança , Infecções Comunitárias Adquiridas/diagnóstico , Primers do DNA , Sondas de DNA , DNA Bacteriano , DNA Viral , Humanos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e EspecificidadeRESUMO
Targeting the ubiquitin-proteasome pathway has emerged as a promising approach for treating cancer. Bortezomib (VELCADE, formerly known as PS-341), a potent and reversible proteasome inhibitor, is being evaluated in clinical trials for treating multiple myeloma, and various other types of hematologic and solid tumors. Proteasome inhibitors are known to induce apoptosis in human cancer cells. Nevertheless, the mechanisms of apoptosis induced by proteasome inhibitors remain unclear. In this study, we investigated the role of p53 and its downstream targets in bortezomib-induced apoptosis in HCT116 human colon cancer cells. We demonstrated that bortezomib induced p53, and activated its downstream genes p21, PUMA and Bax in a p53-dependent fashion. However, apoptotic response to bortezomib was not affected by the deletion of p53. Surprisingly, we found that bortezomib-induced apoptosis was markedly enhanced in the p21-knockout cells, while significantly decreased in the BAX-knockout cells. Furthermore, in the cells deficient for both Bax and p21, apoptosis was restored to the level in the parental or the p53-deficient cells. The opposite effects of Bax and p21 were unrelated to the extent of proteasome inhibition, and were also observed in cells treated with different proteasome inhibitors. These results indicate that p53 downstream targets can collectively modulate apoptotic response to bortezomib and other proteasome inhibitors.