Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mammary Gland Biol Neoplasia ; 29(1): 2, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289494

RESUMO

In preclinical studies, accurate monitoring of tumor dynamics is crucial for understanding cancer biology and evaluating therapeutic interventions. Traditional methods like caliper measurements and bioluminescence imaging (BLI) have limitations, prompting the need for improved imaging techniques. This study introduces a fast-scan high-frequency ultrasound (HFUS) protocol for the longitudinal assessment of syngeneic breast tumor grafts in mice, comparing its performance with caliper, BLI measurements and with histological analysis. The E0771 mammary gland tumor cell line, engineered to express luciferase, was orthotopically grafted into immunocompetent C57BL/6 mice. Tumor growth was monitored longitudinally at multiple timepoints using caliper measurement, HFUS, and BLI, with the latter two modalities assessed against histopathological standards post-euthanasia. The HFUS protocol was designed for rapid, anesthesia-free scanning, focusing on volume estimation, echogenicity, and necrosis visualization. All mice developed tumors, only 20.6% were palpable at day 4. HFUS detected tumors as small as 2.2 mm in average diameter from day 4 post-implantation, with an average scanning duration of 47 s per mouse. It provided a more accurate volume assessment than caliper, with a lower average bias relative to reference tumor volume. HFUS also revealed tumor necrosis, correlating strongly with BLI in terms of tumor volume and cellularity. Notable discrepancies between HFUS and BLI growth rates were attributed to immune cell infiltration. The fast HFUS protocol enables precise and efficient tumor assessment in preclinical studies, offering significant advantages over traditional methods in terms of speed, accuracy, and animal welfare, aligning with the 3R principle in animal research.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Análise Custo-Benefício , Ultrassonografia , Linhagem Celular Tumoral , Necrose
2.
EMBO J ; 39(23): e104369, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124732

RESUMO

Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP-A, VAP-B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP-A, VAP-B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non-conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non-conventional FFAT motifs (named Phospho-FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho-FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho-FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER-endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter-organelle contacts.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Receptores de Quimiocinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Humanos , Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Fosforilação , Ligação Proteica , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
3.
BMC Cancer ; 24(1): 295, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438841

RESUMO

BACKGROUND: Early hormone-positive breast cancers typically have favorable outcomes, yet long-term surveillance is crucial due to the risk of late recurrences. While many studies associate MMP-11 expression with poor prognosis in breast cancer, few focus on early-stage cases. This study explores MMP-11 as an early prognostic marker in hormone-positive breast cancers. METHODS: In this retrospective study, 228 women with early hormone-positive invasive ductal carcinoma, treated surgically between 2011 and 2016, were included. MMP-11 expression was measured by immunohistochemistry, and its association with clinical and MRI data was analyzed. RESULTS: Among the patients (aged 31-89, median 60, with average tumor size of 15.7 mm), MMP-11 staining was observed in half of the cases. This positivity correlated with higher uPA levels and tumor grade but not with nodal status or size. Furthermore, MMP-11 positivity showed specific associations with MRI features. Over a follow-up period of 6.5 years, only 12 oncological events occurred. Disease-free survival was linked to Ki67 and MMP-11. CONCLUSION: MMP-11, primarily present in tumor-surrounding stromal cells, correlates with tumor grade and uPA levels. MMP-11 immunohistochemical score demonstrates a suggestive trend in association with disease-free survival, independent of Ki67 and other traditional prognostic factors. This highlights the potential of MMP-11 as a valuable marker in managing early hormone-positive breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Intervalo Livre de Doença , Neoplasias da Mama/diagnóstico por imagem , Antígeno Ki-67 , Metaloproteinase 11 da Matriz , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Hormônios
4.
Circ Res ; 130(2): 184-199, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34886684

RESUMO

BACKGROUND: Impairment of cellular cholesterol trafficking is at the heart of atherosclerotic lesions formation. This involves egress of cholesterol from the lysosomes and 2 lysosomal proteins, the NPC1 (Niemann-Pick C1) and NPC2 that promotes cholesterol trafficking. However, movement of cholesterol out the lysosome and how disrupted cholesterol trafficking leads to atherosclerosis is unclear. As the Wnt ligand, Wnt5a inhibits the intracellular accumulation of cholesterol in multiple cell types, we tested whether Wnt5a interacts with the lysosomal cholesterol export machinery and studied its role in atherosclerotic lesions formation. METHODS: We generated mice deleted for the Wnt5a gene in vascular smooth muscle cells. To establish whether Wnt5a also protects against cholesterol accumulation in human vascular smooth muscle cells, we used a CRISPR/Cas9 guided nuclease approach to generate human vascular smooth muscle cells knockout for Wnt5a. RESULTS: We show that Wnt5a is a crucial component of the lysosomal cholesterol export machinery. By increasing lysosomal acid lipase expression, decreasing metabolic signaling by the mTORC1 (mechanistic target of rapamycin complex 1) kinase, and through binding to NPC1 and NPC2, Wnt5a senses changes in dietary cholesterol supply and promotes lysosomal cholesterol egress to the endoplasmic reticulum. Consequently, loss of Wnt5a decoupled mTORC1 from variations in lysosomal sterol levels, disrupted lysosomal function, decreased cholesterol content in the endoplasmic reticulum, and promoted atherosclerosis. CONCLUSIONS: These results reveal an unexpected function of the Wnt5a pathway as essential for maintaining cholesterol homeostasis in vivo.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína C1 de Niemann-Pick/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína Wnt-5a/genética
5.
J Biol Chem ; 298(5): 101780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231443

RESUMO

Membrane contact sites are specialized areas where the membranes of two distinct organelles are physically connected and allow for the exchange of molecules and for signaling processes. Understanding the mechanisms whereby proteins localize to and function in these structures is of special interest; however, methods allowing for reconstitution of these contact sites are few and only based on synthetic membranes and recombinant proteins. Here, we devised a strategy to create in situ artificial contact sites between synthetic and endogenous organelle membranes. Liposomes functionalized with a peptide containing a two phenylalanines in an acidic tract (FFAT) motif were added to adherent cells whose plasma membrane was perforated. Confocal and super-resolution microscopy revealed that these liposomes associated with the endoplasmic reticulum via the specific interaction of the FFAT motif with endoplasmic reticulum-resident vesicle-associated membrane protein-associated proteins. This approach allowed for quantification of the attachment properties of peptides corresponding to FFAT motifs derived from distinct proteins and of a protein construct derived from steroidogenic acute regulatory protein-related lipid transfer domain-3. Collectively, these data indicate that the creation of in situ artificial contact sites represents an efficient approach for studying the membrane-tethering activity of proteins and for designing membrane contact site reconstitution assays in cellular contexts.


Assuntos
Retículo Endoplasmático , Lipossomos , Membranas Artificiais , Motivos de Aminoácidos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445827

RESUMO

Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Inibidores Teciduais de Metaloproteinases/metabolismo , Colagenases , Gelatinases , Metaloproteinase 3 da Matriz , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico
7.
EMBO J ; 36(10): 1412-1433, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28377464

RESUMO

StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico , Células HeLa , Humanos , Ligação Proteica , Proteínas de Transporte Vesicular/metabolismo
8.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858488

RESUMO

Membrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles.


Assuntos
Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Receptores de Quimiocinas/genética , Proteínas de Transporte Vesicular/genética , Motivos de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Retículo Endoplasmático/metabolismo , Endossomos/genética , Complexo de Golgi/genética , Humanos , Masculino , Camundongos , Membranas Mitocondriais/metabolismo , Ligação Proteica , Proteômica , Espermatozoides/metabolismo
9.
Clin Chem Lab Med ; 57(6): 901-910, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30838840

RESUMO

Background uPA and PAI-1 are breast cancer biomarkers that evaluate the benefit of chemotherapy (CT) for HER2-negative, estrogen receptor-positive, low or intermediate grade patients. Our objectives were to observe clinical routine use of uPA/PAI-1 and to build a new therapeutic decision tree integrating uPA/PAI-1. Methods We observed the concordance between CT indications proposed by a canonical decision tree representative of French practices (not including uPA/PAI-1) and actual CT prescriptions decided by a medical board which included uPA/PAI-1. We used a method of machine learning for the analysis of concordant and non-concordant CT prescriptions to generate a novel scheme for CT indications. Results We observed a concordance rate of 71% between indications proposed by the canonical decision tree and actual prescriptions. Discrepancies were due to CT contraindications, high tumor grade and uPA/PAI-1 level. Altogether, uPA/PAI-1 were a decisive factor for the final decision in 17% of cases by avoiding CT prescription in two-thirds of cases and inducing CT in other cases. Remarkably, we noted that in routine practice, elevated uPA/PAI-1 levels seem not to be considered as a sufficient indication for CT for N≤3, Ki 67≤30% tumors, but are considered in association with at least one additional marker such as Ki 67>14%, vascular invasion and ER-H score <150. Conclusions This study highlights that in the routine clinical practice uPA/PAI-1 are never used as the sole indication for CT. Combined with other routinely used biomarkers, uPA/PAI-1 present an added value to orientate the therapeutic choice.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Aprendizado de Máquina , Inibidor 1 de Ativador de Plasminogênio/análise , Ativador de Plasminogênio Tipo Uroquinase/análise , Adulto , Idoso , Biomarcadores Tumorais/análise , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Árvores de Decisões , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Taxa de Sobrevida
10.
Int J Mol Sci ; 20(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405107

RESUMO

Probiotics are used in the management of some gastrointestinal diseases. However, little is known about their effects on normal gastric epithelial biology. The aim of this study was to explore how the probiotic mixture VSL#3 affects gastric cell lineages in mice with a special focus on protective and aggressive factors. Weight-matching littermate male mice (n = 14) were divided into treated and control pairs. The treated mice received VSL#3 (5 mg/day/mouse) by gastric gavage for 10 days. Control mice received only the vehicle. Food consumption and bodyweight were monitored. All mice were injected intraperitoneally with bromodeoxyuridine (120 mg/Kg bodyweight) two hours before sacrificed to label S-phase cells. Stomach tissues were processed for lectin- and immunohistochemical examination. ImageJ software was used to quantify immunolabeled gastric epithelial cells. Real-time quantitative polymerase chain reaction was used to provide relative changes in expression of gastric cell lineages specific genes. Results revealed that treated mice acquired (i) increased production of mucus, trefoil factor (TFF) 1 and TFF2, (ii) decreased production of pepsinogen, and (iii) increased ghrelin-secreting cells. No significant changes were observed in bodyweight, food consumption, cell proliferation, or parietal cells. Therefore, VSL#3 administration amplifies specific cell types specialized in the protection of the gastric epithelium.


Assuntos
Mucosa Gástrica/metabolismo , Pepsinogênio A/genética , Probióticos/farmacologia , Fatores Trefoil/genética , Animais , Regulação para Baixo , Mucosa Gástrica/citologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Regulação para Cima
11.
J Cell Sci ; 127(Pt 21): 4692-701, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205763

RESUMO

Metastatic lymph node 51 (MLN51, also known as CASC3) is a core component of the exon junction complex (EJC), which is loaded onto spliced mRNAs and plays an essential role in determining their fate. Unlike the three other EJC core components [eIF4AIII, Magoh and Y14 (also known as RBM8A)], MLN51 is mainly located in the cytoplasm, where it plays a key role in the assembly of stress granules. In this study, we further investigated the cytoplasmic role of MLN51. We show that MLN51 is a new component of processing bodies (P-bodies). When overexpressed, MLN51 localizes in novel small cytoplasmic foci. These contain RNA, show directed movements and are distinct from stress granules and P-bodies. The appearance of these foci correlates with the process of P-body disassembly. A similar reduction in P-body count is also observed in human HER2-positive (HER2(+)) breast cancer cells overexpressing MLN51. This suggests that P-body disassembly and subsequent mRNA deregulation might correlate with cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Citoplasma/metabolismo , Grânulos Citoplasmáticos/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Breast Cancer Res Treat ; 160(2): 249-259, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27709352

RESUMO

PURPOSE: We explored the clinical utility of human epidermal growth factor receptor-2 extracellular domain (HER2/ECD) in patients treated for an invasive breast cancer with HER2 overexpression. METHODS: We prospectively studied HER2/ECD levels in the sera of 334 women included between 2007 and 2014, all treated with trastuzumab. HER2/ECD levels were measured at diagnosis, during treatments, and along the follow-up. We investigated the relationship of HER2/ECD with other clinicopathological parameters at diagnosis, its prognosis value, and its utility during the monitoring of a neoadjuvant treatment and the follow-up. RESULTS: Elevated HER2/ECD at diagnosis correlated positively with parameters associated with tumor aggressiveness. Disease-free survival of non-metastatic patients was significantly shorter in patients with high HER2/ECD at diagnosis (HR = 13.6, 95 % CI 1.6-113.6, P < 0.0001). Progression-free survival of metastatic patients was better for patients with low HER2/ECD (HR = 2.6, 95 % CI 1.2-5.3, P = 0.033). A multivariate analysis revealed that HER2/ECD level at diagnosis was an independent prognosis factor. During neoadjuvant therapy, a significant decrease in HER2/ECD was reported only for the complete histological response group (P = 0.031). During the follow-up, HER2/ECD helped predict relapse, disease progression, and metastases before imaging in 18.6 % cases of the studied cohort. CONCLUSIONS: HER2/ECD is a prognosis factor that is valuable in evaluating the neoadjuvant treatment efficiency. HER2/ECD also appears to be a helpful surveillance biomarker for the early diagnosis of relapses and to predict the fate of metastases. This study brings evidences to support the use of HER2/ECD in the management of HER2-positive breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Expressão Gênica , Domínios Proteicos , Receptor ErbB-2/sangue , Receptor ErbB-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Receptor ErbB-2/química
13.
Biochem Soc Trans ; 44(2): 493-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068960

RESUMO

Membrane contact sites (MCSs) are subcellular regions where the membranes of distinct organelles come into close apposition. These specialized areas of the cell, which are involved in inter-organelle metabolite exchange, are scaffolded by specific complexes. STARD3 [StAR (steroidogenic acute regulatory protein)-related lipid transfer domain-3] and its close paralogue STARD3NL (STARD3 N-terminal like) are involved in the formation of contacts between late-endosomes and the endoplasmic reticulum (ER). The lipid transfer protein (LTP) STARD3 and STARD3NL, which are both anchored on the limiting membrane of late endosomes (LEs), interact with ER-anchored VAP [VAMP (vesicle-associated membrane protein)-associated protein] (VAP-A and VAP-B) proteins. This direct interaction allows ER-endosome contact formation. STARD3 or STARD3NL-mediated ER-endosome contacts, which affect endosome dynamics, are believed to be involved in cholesterol transport.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Sítios de Ligação , Transporte Biológico , Colesterol/metabolismo , Humanos , Ligação Proteica
14.
PLoS Biol ; 11(12): e1001726, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311986

RESUMO

Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration.


Assuntos
Movimento Celular/fisiologia , Fator 4 Associado a Receptor de TNF/fisiologia , Junções Íntimas/fisiologia , Animais , Células COS , Membrana Celular/fisiologia , Chlorocebus aethiops , Humanos , Fosfatidilinositóis/fisiologia , Proteínas Recombinantes
15.
Proc Natl Acad Sci U S A ; 110(15): 5903-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530232

RESUMO

The multiprotein exon junction complex (EJC), deposited by the splicing machinery, is an important constituent of messenger ribonucleoprotein particles because it participates to numerous steps of the mRNA lifecycle from splicing to surveillance via nonsense-mediated mRNA decay pathway. By an unknown mechanism, the EJC also stimulates translation efficiency of newly synthesized mRNAs. Here, we show that among the four EJC core components, the RNA-binding protein metastatic lymph node 51 (MLN51) is a translation enhancer. Overexpression of MLN51 preferentially increased the translation of intron-containing reporters via the EJC, whereas silencing MLN51 decreased translation. In addition, modulation of the MLN51 level in cell-free translational extracts confirmed its direct role in protein synthesis. Immunoprecipitations indicated that MLN51 associates with translation-initiating factors and ribosomal subunits, and in vitro binding assays revealed that MLN51, alone or as part of the EJC, interacts directly with the pivotal eukaryotic translation initiation factor eIF3. Taken together, our data define MLN51 as a translation activator linking the EJC and the translation machinery.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Transporte Biológico , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Íntrons , Estrutura Terciária de Proteína , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo
16.
J Cell Sci ; 126(Pt 23): 5500-12, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24105263

RESUMO

Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Transporte Biológico , Proteínas de Transporte/genética , Retículo Endoplasmático/ultraestrutura , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas de Transporte Vesicular/genética
17.
Int J Radiat Oncol Biol Phys ; 118(2): 485-497, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619790

RESUMO

PURPOSE: Stress granules (SGs) are cytoplasmic aggregates in which mRNAs and specific proteins are trapped in response to a variety of damaging agents. They participate in the cellular defense mechanisms. Currently, their mechanism of formation in response to ionizing radiation and their role in tumor-cell radiosensitivity remain elusive. METHODS AND MATERIALS: The kinetics of SG formation was investigated after the delivery of photon irradiation at different doses to head and neck squamous cell carcinoma cell lines with different radiosensitivities and the HeLa cervical cancer cell line (used as reference). In parallel, the response to a canonical inducer of SGs, sodium arsenite, was also studied. Immunolabeling of SG-specific proteins and mRNA fluorescence in situ hybridization enabled SG detection and quantification. Furthermore, a ribopuromycylation assay was used to assess the cell translational status. To determine whether reactive oxygen species were involved in SG formation, their scavenging or production was induced by pharmacologic pretreatment in both SCC61 and SQ20B cells. RESULTS: Photon irradiation at different doses led to the formation of cytoplasmic foci that were positive for different SG markers. The presence of SGs gradually increased from 30 minutes to 2 hours postexposure in HeLa, SCC61, and Cal60 radiosensitive cells. In turn, the SQ20B and FaDu radioresistant cells did not form SGs. These results indicated a correlation between sensitivity to photon irradiation and SG formation. Moreover, SG formation was significantly reduced by reactive oxygen species scavenging using dimethyl sulfoxide in SCC61 cells, which supported their role in SG formation. However, a reciprocal experiment in SQ20B cells that depleted glutathione using buthionine sulfoximide did not restore SG formation in these cells. CONCLUSIONS: SGs are formed in response to irradiation in radiosensitive, but not in radioresistant, head and neck squamous cell carcinoma cells. Interestingly, compared with sodium arsenite-induced SGs, photon-induced SGs exhibited a different morphology and cellular localization. Moreover, photon-induced SGs were not associated with the inhibition of translation; rather, they depended on oxidative stress.


Assuntos
Arsenitos , Neoplasias de Cabeça e Pescoço , Compostos de Sódio , Grânulos de Estresse , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Espécies Reativas de Oxigênio , Hibridização in Situ Fluorescente , Células HeLa , Tolerância a Radiação , Neoplasias de Cabeça e Pescoço/radioterapia
18.
Cancers (Basel) ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672312

RESUMO

Pathological complete response (pCR) after neoadjuvant systemic treatment (NST) is an important prognostic factor in HER2-positive breast cancer. The majority of HER2-positive breast cancers are amplified at the HER2 gene locus, several genes are co-amplified with HER2, and a subset of them are co-expressed. The STARD3 gene belongs to the HER2 amplicon, and its role as a predictive marker was never addressed. The objective of this study was to investigate the predictive value of STARD3 protein expression on NST pathological response in HER2-positive breast cancer. In addition, we studied the prognostic value of this marker. METHODS: We conducted a retrospective study between 2007 and 2020 on 112 patients with non-metastatic HER2-positive breast cancer treated by NST and then by surgery. We developed an immunohistochemistry assay for STARD3 expression and subcellular localization and determined a score for STARD3-positivity. As STARD3 is an endosomal protein, its expression was considered positive if the intracellular signal pattern was granular. RESULTS: In this series, pCR was achieved in half of the patients. STARD3 was positive in 86.6% of cases and was significantly associated with pCR in univariate analysis (p = 0.013) and after adjustment on other known pathological parameters (p = 0.044). Performances on pCR prediction showed high sensitivity (96%) and negative predictive value (87%), while specificity was 23% and positive predictive value was 56%. Overall, specific, relapse-free, and distant metastasis-free survivals were similar among STARD3 positive and negative groups, independently of other prognosis factors. CONCLUSION: NST is an opportunity for HER2-positive cancers. In this series of over a hundred HER2-positive and non-metastatic patients, a STARD3-negative score was associated with the absence of pathological complete response. This study suggests that determining STARD3 overexpression status on initial biopsies of HER2-positive tumors is an added value for the management of a subset of patients with high probability of no pathological response.

19.
Int J Cancer ; 131(5): 1032-41, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22034055

RESUMO

Cyclooxygenase-2 (Cox-2) expression is a marker of reduced survival in gastric cancer patients, and inhibition of Cox-2 suppresses gastrointestinal carcinogenesis in experimental animal models. To investigate the role of Cox-2 in gastric carcinogenesis in vivo, we utilized trefoil factor 1 (Tff1) deficient mice, which model the neoplastic process of the stomach by developing gastric adenomas with full penetrance. These tumors express Cox-2 protein and mRNA, and we have now investigated the effects of genetic deletion of the mouse Cox-2 gene [also known as prostaglandin-endoperoxide synthase 2 (Ptgs2)] and a Cox-2 selective drug celecoxib. Our results show that genetic deletion of Cox-2 in the Tff1 deleted background resulted in reduced adenoma size and ulceration with a chronic inflammatory reaction at the site of the adenoma. To characterize the effect of Cox-2 inhibition in more detail, mice that had already developed an adenoma were fed with celecoxib for 8-14 weeks, which resulted in disruption of the adenoma that ranged from superficial erosion to deep ulcerated destruction accompanied with chronic inflammation. Importantly, mice fed with celecoxib for 16 weeks, followed by control food for 9 weeks, redeveloped a complete adenoma with no detectable inflammatory process. Finally, we determined the identity of the Cox-2 expressing cells and found them to be fibroblasts. Our results show that inhibition of Cox-2 is sufficient to reversibly disrupt gastric adenomas in mice.


Assuntos
Adenoma/prevenção & controle , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/fisiologia , Peptídeos/fisiologia , Pirazóis/uso terapêutico , Neoplasias Gástricas/prevenção & controle , Sulfonamidas/uso terapêutico , Adenoma/metabolismo , Adenoma/patologia , Animais , Apoptose , Western Blotting , Celecoxib , Proliferação de Células , Feminino , Imunofluorescência , Mucosa Gástrica/metabolismo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Knockout , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fator Trefoil-1
20.
Gastroenterology ; 140(3): 879-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21111741

RESUMO

BACKGROUND & AIMS: Epigenetic alterations have been correlated with field cancerization in human patients, but evidence from experimental models that specific epigenetic changes can initiate cancer has been lacking. Although hormones have been associated with cancer risk, the mechanisms have not been determined. The peptide hormone gastrin exerts a suppressive effect on antral gastric carcinogenesis. METHODS: N-methyl-N-nitrosourea (MNU)-dependent gastric cancer was investigated in hypergastrinemic (INS-GAS), gastrin-deficient (GAS(-/-)), Tff1-deficient (Tff1(+/-)), and wild-type (WT) mice. Epigenetic alterations of the trefoil factor 1 (TFF1) tumor suppressor gene were evaluated in vitro and in vivo. RESULTS: Human intestinal-type gastric cancers in the antrum exhibited progressive TFF1 repression and promoter hypermethylation. Mice treated with MNU exhibited a field defect characterized by widespread Tff1 repression associated with histone H3 lysine 9 methylation and H3 deacetylation at the Tff1 promoter in epithelial cells. In MNU-induced advanced cancers, DNA methylation at the Tff1 promoter was observed. Tumor induction and Tff1 repression were increased in MNU-treated mice by Helicobacter infection. Hypergastrinemia suppressed MNU-dependent tumor initiation and progression in a manner that correlated with gene silencing and epigenetic alterations of Tff1. In contrast, homozygous gastrin-deficient and heterozygous Tff1-deficient mice showed enhanced MNU-dependent field defects and cancer initiation compared with WT mice. In gastric cancer cells, gastrin stimulation partially reversed the epigenetic silencing in the TFF1 promoter. CONCLUSIONS: Initiation of antral gastric cancer is associated with progressive epigenetic silencing of TFF1, which can be suppressed by the hormone gastrin.


Assuntos
Transformação Celular Neoplásica/genética , Gastrinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Peptídeos/genética , Neoplasias Gástricas/prevenção & controle , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Modelos Animais de Doenças , Feminino , Gastrinas/deficiência , Gastrinas/genética , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter felis/patogenicidade , Histonas/metabolismo , Humanos , Masculino , Metilnitrosoureia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/deficiência , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção , Fator Trefoil-1 , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA