Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(14): 6604-6612, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362968

RESUMO

Ion migration, hole trapping, and electron-hole recombination are common processes in metal halide perovskites. We demonstrate using ab initio non-adiabatic molecular dynamics and time-domain density functional theory that they are intricately related and strongly influence each other. The hole injection accelerates ion migration by decreasing the diffusion barrier and shortening the migration length. The injected hole also promotes the nonradiative charge recombination by strengthening electron-phonon interactions in the low-frequency region and prolonging the quantum coherence time. The synergy stems from the soft perovskite lattice and response of the valence band maximum to the Pb-I lattice distortion induced by the hole. This work provides important insights into the influence of ion mobility and hole injection on the performance of perovskite solar cells and suggests that high concentration of holes should be avoided.

2.
J Am Chem Soc ; 142(6): 3060-3068, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31965789

RESUMO

Charge carrier recombination plays a vital role in the CH3NH3PbI3 perovskite solar cell. By investigating a possible synergy between ion migration and charge carrier recombination, we demonstrate that the nonradiative recombination accelerates by an order of magnitude during iodide migration. The migration induces lattice distortion that brings electrons and holes close to each other and increases their electrostatic interactions. The wave function localization in the same spatial region, and the enhanced lattice and iodide movements increase the nonadiabatic coupling. At the same time, quantum coherence lasts longer, because electron and hole energy levels become correlated. All these factors greatly increase the recombination rate. Moreover, the energy level of the iodide vacancy created during the migration moves from inside the conduction band in the equilibrated structure into the band gap, acting as a typical efficient nonradiative charge recombination center. Our work shows that the different dynamic processes are strongly correlated in halide perovskites and demonstrates that defects, considered to be benign, can become very detrimental under non-equilibrium conditions. The reported results strongly suggest that ion migration should be avoided in halide perovskites, both for its own reasons, such as the large current-voltage hysteresis, and because it greatly accelerates charge carrier losses.

3.
J Phys Chem Lett ; 15(15): 4088-4095, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38587462

RESUMO

Although it is generally acknowledged that transition metals at high oxidation states represent superior oxygen evolution reaction (OER) activity, the preparation and stability of such a high-valence state are still a challenge, which requires relatively harsh reaction conditions and is unstable under ambient conditions. Herein, we report the formation of trivalent nickel (Ni3+) in laser-fabricated nickel oxides induced by polyaniline (PANI) under electrochemical activation via a significant charge transfer between Ni and N, as confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. Thereafter, the presence of Ni3+ and the improved conductivity by PANI effectively increase the electrochemical OER activity of the samples together with excellent long-term stability. This work provides new insights for the rational manufacture of high-valence metal for electrochemical reactions.

4.
J Phys Chem Lett ; 14(1): 107-115, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574224

RESUMO

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar absorbers have attracted intensive investigations for next-generation photovoltaic applications. Here, by using ab initio static and molecular dynamics simulations, we investigated the anion compositional dependence of electron-vibration interaction in CZTSSe materials. We found that the conduction band fluctuates more than the valence band, and as a result, the band gap variation is more sensitive to the change of the former, which can be understood in terms of p-d hybridization in the valence bands. Electron-phonon coupling is smaller in CZTSSe alloy compared to pure S- or Se-containing structures, as evidenced by the smaller fluctuation of excitation energy, and can be attributed to the weaker structural dynamics of the metal-anion bond. Small electron-phonon coupling strength may lead to better charge transport in these materials. We also elucidated the interplay between disordered structures and S/Se stoichiometry through analysis of optical line width. The results highlight the importance of anion composition engineering and provide new insights into the rational design of high-performing kesterite absorbers for solar cells.

5.
J Phys Chem Lett ; 13(3): 857-863, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35045256

RESUMO

By interplay between first-principles molecular dynamics and nonadiabatic molecular dynamics simulations based on the decoherence-induced surface-hopping approach, we investigate and quantify the mechanisms through which different electron polaron hopping regimes in the reduced anatase TiO2(101) surface influence recombination of photogenerated charge carriers, also in the presence of adsorbed water (H2O) molecules. The simulations reveal that fast hopping regimes promote ultrafast recombination of photogenerated charge-carriers. Conversely, charge recombination is delayed in the presence of slower polaron hopping and even more so if the polaron is pinned at one Ti-site, as typical following adsorption of H2O on the anatase(101) surface. These trends are related to the observed enhancement of the space and energy overlap between conduction band minimum and polaron band gap states, and the ensuing nonadiabatic couplings (NAC) strengths, during a polaronic hop. We expect these insights on the beneficial role of polaron diffusion pinning for the extended lifetime of photoexcitations in TiO2 to sustain ongoing developments of photocatalytic strategies based on this substrate.

6.
J Phys Chem Lett ; 11(24): 10463-10468, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33295181

RESUMO

The structures and band gaps of copper-zinc-tin selenosulfides (CZTSSe) are investigated for a range of anion compositions through experimental analysis and complementary first-principles simulations. The band gap was found to be extremely sensitive to the Sn-anion bond length, with an almost linear correlation with the average Sn-anion bond length in the mixed anion phase Cu2ZnSn(SxSe1-x)4. Therefore, an accurate prediction of band gaps using first-principles methods requires the accurate reproduction of the experimental bond lengths. This is challenging for many widely used approaches that are suitable for large supercells. The HSE06 functional was found to predict the structure and band gap in good agreement with the experiment but is computationally expensive for large supercells. It was shown that a geometry optimization with the MS2 meta-GGA functional followed by a single point calculation of electronic properties using HSE06 is a reasonable compromise for modeling larger supercells that are often unavoidable in the study of point and extended defects.

7.
J Phys Chem C Nanomater Interfaces ; 123(39): 23882-23889, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064017

RESUMO

Using first-principles density functional calculations, we investigate the structure and properties of three different grain boundaries (GBs) in the solar absorber material CdTe. Among the low ∑ value symmetric tilt GBs ∑3 (111), ∑3 (112), and ∑5 (310), we confirm that the ∑3 (111) is the most stable one but is relatively benign for carrier transport as it does not introduce any new states into the gap. The ∑3 (112) and ∑5 (310) GBs, however, are detrimental due to gap states induced by Te-Te and Cd-Cd dangling bonds. We systematically investigate the segregation of O, Se, Cl, Na, and Cu to the GBs and associated electronic properties. Our results show that co-doping with Cl and Na is predicted to be a viable approach passivating all gap states induced by dangling bonds in CdTe.

8.
Sci Rep ; 8(1): 7760, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773812

RESUMO

Methyl-ammonium lead iodide perovskite (CH3NH3PbI3) has drawn great attention due to its excellent photovoltaic properties. Because of its loosely compacted structure, the structural, electronic and optical properties of CH3NH3PbI3 are sensitive to external modulations. Strain effects on CH3NH3PbI3 are fully investigated by the first principles calculations. The results indicate that the inorganic framework deforms under compression or stretch and the embedded organic CH3NH3+ molecules rotate correspondingly. A band gap oscillation and a new structural phase in response to the external strain were observed for the first time. These phenomena are explained with the nonlinear structural deformation and phase transition under the external strains. The semi-quantitative relationship between the band gap variation and geometry change under the external strain is obtained. We found that the shift of valence band maximum under the external strain is mostly determined by the most stretched or compressed Pb-I bond of CH3NH3PbI3, and the shift of the conduction band minimum under the external strain is likely to be determined by the largest Pb-I-Pb bond angle in the system. These results are important for understanding of strain effects on semiconductors and guiding the experiments to improve the performance of the perovskite solar cells.

9.
ACS Appl Mater Interfaces ; 10(17): 14614-14621, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29638106

RESUMO

Graphene has been combined with molybdenum disulfide (MoS2) to ameliorate the poor cycling stability and rate performance of MoS2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS2. Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

10.
J Phys Chem Lett ; 8(4): 876-883, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28161952

RESUMO

Low-dimensional perovskites (A2BX4), in which the A cations are replaced by different organic cations, may be used for photovoltaic applications. In this contribution, we systematically study the two-dimensional (2D) (C4H9NH3)2PbX4 (X═Cl, Br and I) hybrid perovskites by density functional theory (DFT). A clear structures-properties relationship, with the photophysical characteristics directly related to the dimensionality and material compositions, was established. The strong s-p antibonding couplings in both bulk and monolayer (C4H9NH3)2PbI4 lead to low effective masses for both holes (mh*) and electrons (me*). However, mh* increases in proportion to the decreasing inorganic layer thickness, which eventually leads to a slightly shifted band edge emission found in 2D perovskites. Notably, the 2D (C4H9NH3)2PbX4 perovskites exhibit strong optical transitions in the visible light spectrum, and the optical absorption tunings can be achieved by varying the compositions and the layer thicknesses. Such work paves an important way to uncover the structures-properties relationship in 2D perovskites.

11.
Sci Rep ; 6: 20131, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846401

RESUMO

Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention due to its fast increase in efficiency in dye sensitization TiO2 solid-state solar cells. We performed first-principles calculations to investigate several different types of CH3NH3PbI3/TiO2 interfaces. The interfacial structures between the different terminated CH3NH3PbI3 and phase TiO2 are thoroughly explored, and the calculated results suggest that the interfacial Pb atoms play important roles in the structure stability and electronic properties. A charge transfer from Pb atoms to the O atoms of TiO2 lead to the band edge alignment of Pb-p above Ti-d about 0.4 eV, suggesting a better carries separation. On the other hand, for TiO2, rutile (001) is the better candidate due to the better lattice and atoms arrangement match with CH3NH3PbI3.

12.
J Phys Condens Matter ; 28(1): 015004, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26571138

RESUMO

Transition metal dichalcogenides (TMDs) have attracted extensive attention due to their appealing properties for device applications. In this work, we explored the structure stability, electronic structure and magnetism of low-dimensional scandium dioxides, ScO2, by using the first-principles calculations. The results demonstrate that bulk ScO2, monolayers and nanoribbons (NRs) are thermodynamically stable, implying a high possibility of fabricating ScO2 nanocrystals in experiments. Despite the metallic characteristics of bulk ScO2, low-dimensional ScO2 possesses various electronic behaviors that can be further modulated by crystal structure and dimensionality. The results also show that the ground states of ScO2 monolayers and NRs are ferromagnetic (FM) with about 1 µ B per ScO2 formula. Our studies expand a new realm in low-dimensional TMDs, with tunable electronic and magnetic properties.

13.
ACS Appl Mater Interfaces ; 8(25): 15991-6001, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27250732

RESUMO

Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.

14.
Adv Mater ; 28(45): 9986-9992, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27677653

RESUMO

Benzylamine is introduced as a surface passivation molecule that improves the moisture-resistance of the perovskites while simultaneously enhancing their electronic properties. Solar cells based on benzylamine-modified formamidinium lead iodide perovskite films exhibit a champion efficiency of 19.2% and an open-circuit voltage of 1.12 V. The modified FAPbI3 films exhibit no degradation after >2800 h air exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA