Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232347

RESUMO

A drawback of magnetorheological fluids is low kinetic stability, which severely limits their practical utilization. This paper describes the suppression of sedimentation through a combination of bidispersal and coating techniques. A magnetic, sub-micro additive was fabricated and sequentially coated with organosilanes. The first layer was represented by compact silica, while the outer layer consisted of mesoporous silica, obtained with the oil-water biphase stratification method. The success of the modification technique was evidenced with transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The coating exceptionally increased the specific surface area, from 47 m2/g (neat particles) up to 312 m2/g, which when combined with lower density, resulted in remarkable improvement in the sedimentation profile. At this expense, the compact/mesoporous silica slightly diminished the magnetization of the particles, while the magnetorheological performance remained at an acceptable level, as evaluated with a modified version of the Cross model. Sedimentation curves were, for the first time in magnetorheology, modelled via a novel five-parameter equation (S-model) that showed a robust fitting capability. The sub-micro additive prevented the primary carbonyl iron particles from aggregation, which was projected into the improved sedimentation behavior (up to a six-fold reduction in the sedimentation rate). Detailed focus was also given to analyze the implications of the sub-micro additives and their surface texture on the overall behavior of the bidisperse magnetorheological fluids.


Assuntos
Compostos de Organossilício , Dióxido de Silício , Ferro/química , Microscopia Eletrônica de Transmissão , Dióxido de Silício/química , Água
2.
Lasers Med Sci ; 34(2): 297-304, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30019263

RESUMO

Bonding orthodontic brackets to ceramic materials is a challenging procedure; femtosecond (FS) laser conditioning could provide improved results, but the ideal settings for effective bracket-zirconia bonding have never been established. This study aimed to analyze the differences in surface roughness and shear bond strength (SBS) produced by different femtosecond laser settings and establish a protocol to prepare zirconia surfaces for optimal adhesion to metal orthodontic brackets. One hundred eighty zirconia samples were assigned to six groups according to surface treatment: (1) control; (2) air-particle abrasion (APA); (3) FS laser irradiation (300 mW output power, 60 µm inter-groove distance); (4) FS laser irradiation (200 mW, 100 µm); (5) FS laser irradiation (40 mW, 60 µm); and (6) FS laser irradiation (200 mW, 60 µm). Surface roughness was measured. Orthodontic brackets were bonded to the zirconia specimens, and SBS was measured. SBS in groups 3 and 6 was significantly higher than the other groups (5.92 ± 1.12 MPa and 5.68 ± 0.94 MPa). No significant differences were found between groups 1, 2, 4, and 5 (3.87 ± 0.77 MPa, 4.25 ± 0.51 MPa, 3.74 ± 0.10 MPa, and 3.91 ± 0.53 MPa). Surface roughness was significantly greater for FS laser than for control and APA groups (p = 1.28 × 10-8). FS laser at 200 mW, 60 µm can be recommended as the ideal settings for treating zirconia surfaces, producing good SBS and more economical energy use.


Assuntos
Braquetes Ortodônticos , Zircônio/química , Colagem Dentária , Teste de Materiais , Resistência ao Cisalhamento , Propriedades de Superfície , Fatores de Tempo
3.
Phys Chem Chem Phys ; 20(20): 13693-13696, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29748674

RESUMO

In the current communication, the synthesis of metallic Bi nanoparticles with coexisting crystallographic structures (rhombohedral, monoclinic, and cubic) obtained via direct femtosecond laser irradiation of NaBiO3 is demonstrated for the first time. By exploring the use of high laser power values, it is revealed that the promoted laser-mediated reactions lead to the synthesis of coexisting phases in metal nanoparticles, which may be a widely occurring phenomenon in other materials under femtosecond laser irradiation, and a fundamental concern for laser-based nanofabrication.

4.
Chemphyschem ; 18(9): 1055-1060, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27875011

RESUMO

Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced.

5.
RSC Adv ; 14(13): 9122-9136, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38500621

RESUMO

Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because of their unique advantage to generate sustainable energy, through the employment of biodegradable and repurposed waste materials, the development of MFCs has garnered considerable interest. Critical elements are typically the electrodes and separator. This mini-review article presents a critical assessment of nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes, cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm formation, and enhanced durability and stability. In addition, the challenges and opportunities associated with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this field. Significant developments in MFCs over the past decade have led to a several-fold increase in achievable power density, yet further improvements in performance and the exploration of cost-effective materials remain promising areas for further advancement. This review demonstrates the great promise of nanofiber-based electrodes and separators in future applications of MFCs.

6.
Nanoscale ; 14(48): 18143-18156, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36449011

RESUMO

Decades of antibiotic use and misuse have generated selective pressure toward the rise of antibiotic-resistant bacteria, which now contaminate our environment and pose a major threat to humanity. According to the evolutionary "Red queen theory", developing new antimicrobial technologies is both urgent and mandatory. While new antibiotics and antibacterial technologies have been developed, most fail to penetrate the biofilm that protects bacteria against external antimicrobial attacks. Hence, new antimicrobial formulations should combine toxicity for bacteria, biofilm permeation ability, biofilm deterioration capability, and tolerability by the organism without renouncing compatibility with a sustainable, low-cost, and scalable production route as well as an acceptable ecological impact after the ineluctable release of the antibacterial compound in the environment. Here, we report on the use of silver nanoparticles (NPs) doped with magnetic elements (Co and Fe) that allow standard silver antibacterial agents to perforate bacterial biofilms through magnetophoretic migration upon the application of an external magnetic field. The method has been proved to be effective in opening micrometric channels and reducing the thicknesses of models of biofilms containing bacteria such as Enterococcus faecalis, Enterobacter cloacae, and Bacillus subtilis. Besides, the NPs increase the membrane lipid peroxidation biomarkers through the formation of reactive oxygen species in E. faecalis, E. cloacae, B. subtilis, and Pseudomonas putida colonies. The NPs are produced using a one-step, scalable, and environmentally low-cost procedure based on laser ablation in a liquid, allowing easy transfer to real-world applications. The antibacterial effectiveness of these magnetic silver NPs may be further optimized by engineering the external magnetic fields and surface conjugation with specific functionalities for biofilm disruption or bactericidal effectiveness.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Biofilmes , Antibacterianos/farmacologia , Enterococcus faecalis , Fenômenos Magnéticos , Testes de Sensibilidade Microbiana
7.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200863

RESUMO

Traditionally, the synthesis of nanomaterials in the ultra-small size regime (1-3 nm diameter) has been linked with the employment of excessive amounts of hazardous chemicals, inevitably leading to significant environmentally detrimental effects. In the current work, we demonstrate the potential of laser fragmentation in liquids (LFL) to produce highly pure and stable iron ultra-small nanoparticles. This is carried out by reducing the size of carbonyl iron microparticles dispersed in various polar solvents (water, ethanol, ethylene glycol, polyethylene glycol 400) and liquid nitrogen. The explored method enables the fabrication of ligand-free iron oxide ultra-small nanoparticles with diameter in the 1-3 nm range, a tight size distribution, and excellent hydrodynamic stability (zeta potential > 50 mV). The generated particles can be found in different forms, including separated ultra-small NPs, ultra-small NPs forming agglomerates, and ultra-small NPs together with zero-valent iron, iron carbide, or iron oxide NPs embedded in matrices, depending on the employed solvent and their dipolar moment. The LFL technique, aside from avoiding chemical waste generation, does not require any additional chemical agent, other than the precursor microparticles immersed in the corresponding solvent. In contrast to their widely exploited chemically synthesized counterparts, the lack of additives and chemical residuals may be of fundamental interest in sectors requiring colloidal stability and the largest possible number of chemically active sites, making the presented pathway a promising alternative for the clean design of new-generation nanomaterials.

8.
Int J Biol Macromol ; 171: 130-149, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33412195

RESUMO

This review summarizes and broadly classifies all of the major sustainable natural carbohydrate bio-macromolecular manifestations in nature - from botanical (cellulose, starch, and pectin), seaweed (alginate, carrageenan, and agar), microbial (bacterial cellulose, dextran, and pullulan), and animal (hyaluronan, heparin, chitin, and chitosan) sources - that have been contrived into electrospun fibers. Furthermore, a relative study of these biomaterials for the fabrication of nanofibers by electrospinning and their characteristics viz. solution behavior, blending nature, as well as rheological and fiber attributes are discussed. The potential multidimensional applications of nanofibers (filtration, antimicrobial, biosensor, gas sensor, energy storage, catalytic, and tissue engineering) originating from these polysaccharides and their major impacts on the properties, functionalities, and uses of these electrospun fibers are compared and critically examined.


Assuntos
Materiais Biocompatíveis/química , Nanofibras/química , Nanotecnologia/métodos , Engenharia Tecidual/métodos , Ágar/química , Alginatos/química , Animais , Carragenina/química , Celulose/química , Quitina/química , Quitosana/química , Dextranos/química , Técnicas Eletroquímicas , Glucanos/química , Heparina/química , Humanos , Ácido Hialurônico/química , Nanofibras/ultraestrutura , Pectinas/química , Amido/química
9.
Chem Commun (Camb) ; 57(63): 7814-7817, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34270643

RESUMO

The effect of the zeta potential of nano zero-valent iron (nZVI) and carbocatalyst on the activation of persulfate was investigated. The oxidation experiments were performed on three different compounds, with variously modified nZVI and three distinct carbocatalysts. From the obtained results, an evident linear correlation between nanoparticles' zeta potential and reaction rate constants of these three compounds oxidation may be observed. This phenomenon is not mechanism-specific and occurs for the radical and non-radical processes. The present work indicates the critical influence of the surface charge of nZVI and carbocatalysts on the persulfate catalytic activation.

10.
Carbohydr Polym ; 247: 116705, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829833

RESUMO

Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.


Assuntos
Carboidratos/química , Nanofibras/química , Nanopartículas/química , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Eletricidade
11.
Water Res ; 162: 302-319, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31288141

RESUMO

Lindane (γ-hexachlorocyclohexane) and its isomers (HCH) are some of the most common and most easily detected organochlorine pesticides in the environment. The widespread distribution of lindane is due to its use as an insecticide, accompanied by its persistence and bioaccumulation, whereas HCH were disposed of as waste in unmanaged landfills. Unfortunately, certain HCH (especially the most reactive ones: γ- and α-HCH) are harmful to the central nervous system and to reproductive and endocrine systems, therefore development of suitable remediation methods is needed to remove them from contaminated soil and water. This paper provides a short history of the use of lindane and a description of the properties of HCH, as well as their determination methods. The main focus of the paper, however, is a review of oxidative and reductive treatment methods. Although these methods of HCH remediation are popular, there are no review papers summarising their principles, history, advantages and disadvantages. Furthermore, recent advances in the chemical treatment of HCH are discussed and risks concerning these processes are given.


Assuntos
Inseticidas , Praguicidas , Poluição Ambiental , Hexaclorocicloexano , Oxirredução
12.
Int J Biol Macromol ; 124: 396-402, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500492

RESUMO

Over the last few years, the electrospinning technique has attracted significant attention for the production of novel nanofibrous materials. At the same time, the use of graphene oxide and the natural products extracted from plants and/or trees have become very popular in various fields of science. In this work, a new method for the production of nanofibers based on a combination of Gum Arabic (GA), as a natural tree gum exudate, PVA, as an environmentally-friendly stabilizer, and graphene oxide (GO) has been developed and characterized. SEM analysis showed fundamental differences on the surface of bare nanofibers with and without GO, and also significantly smaller fiber diameters in the case of the presence of GO (fibers <100 nm present). Raman spectroscopy confirmed and TGA analysis approximated the content of GO in the nanofibers. Adsorption of methylene blue on the produced nanofibrous membrane was about 50% higher in the presence of GO, which opens the possibility to use GO/GA/PVA fibers in several applications, for example for the removal of dyes.


Assuntos
Grafite/química , Goma Arábica/química , Azul de Metileno/isolamento & purificação , Nanofibras/química , Polivinil/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Técnicas Eletroquímicas , Humanos , Cinética , Nanofibras/ultraestrutura , Tamanho da Partícula
13.
ACS Omega ; 3(3): 2735-2742, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023850

RESUMO

Fluorescent carbon quantum dots (CQDs) are synthesized by laser irradiation of carbon glassy particles suspended in polyethylene glycol 200 by two methods, a batch and a flow jet configuration. The flow jet configuration is carried out by the simple combination of common laboratory objects to construct a home-made passage reactor of continuous flow. Despite the simplicity of the system, the laser energy is better harvested by the carbon microparticles, improving the fabrication efficiency a 15% and enhancing the fluorescence of CQDs by an order of magnitude in comparison with the conventional batch. The flow jet-synthesized CQDs have a mean size of 3 nm and are used for fluorescent imaging of transparent healthy and cancer epithelial human cells. Complete internalization is observed with a short incubation time of 10 min without using any extra additive or processing of the cell culture. The CQDs are well fixed in the organelles of the cell even after its death; hence, this is a simple manner to keep the cell information for prolonged periods of time. Moreover, the integrated photostability of the CQDs internalized in in vitro cells is measured and it remains almost constant during at least 2 h, revealing their outstanding performance as fluorescent labels.

14.
Sci Rep ; 8(1): 1884, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382839

RESUMO

In recent years, complex nanocomposites formed by Ag nanoparticles coupled to an α-Ag2WO4 semiconductor network have emerged as promising bactericides, where the semiconductor attracts bacterial agents and Ag nanoparticles neutralize them. However, the production rate of such materials has been limited to transmission electron microscope processing, making it difficult to cross the barrier from basic research to real applications. The interaction between pulsed laser radiation and α-Ag2WO4 has revealed a new processing alternative to scale up the production of the nanocomposite resulting in a 32-fold improvement of bactericidal performance, and at the same time obtaining a new class of spherical AgxWyOz nanoparticles.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Lasers , Luz , Microscopia Eletrônica de Transmissão/métodos , Nanocompostos/química
15.
Sci Rep ; 6: 30478, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464997

RESUMO

The demand for nanocomposites of graphene and carbonaceous materials decorated with metallic nanoparticles is increasing on account of their applications in science and technology. Traditionally, the production of graphene-metal assemblies is achieved by the non-environmentally friendly reduction of metallic salts in carbonaceous suspensions. However, precursor residues during nanoparticle growth may reduce their surface activity and promote cross-chemical undesired effects. In this work we present a laser-based alternative to synthesize ligand-free gold nanoparticles that are anchored onto the graphene surface in a single reaction step. Laser radiation is used to generate highly pure nanoparticles from a gold disk surrounded by a graphene oxide suspension. The produced gold nanoparticles are directly immobilized onto the graphene surface. Moreover, the presence of graphene oxide influences the size of the nanoparticles and its interaction with the laser, causes only a slight reduction of the material. This work constitutes a green alternative synthesis of graphene-metal assemblies and a practical methodology that may inspire future developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA