Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546675

RESUMO

The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in ß-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Comportamento Alimentar , Fatores de Crescimento de Fibroblastos/genética , Homeostase/fisiologia , Humanos , Resistência à Insulina/genética , Proteínas Klotho , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais
2.
Mol Nutr Food Res ; 68(5): e2300539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332573

RESUMO

SCOPE: The rosehip (Rosa canina) is a perennial shrub with a reddish pseudofruit that has demonstrated antidiabetic, antiatherosclerotic, and antiobesogenic effects in rodent models but there is low information about the molecular mechanisms underlying these effects on the onset and progression of diet-induced obesity. METHODS AND RESULTS: Four-week-old C57BL/6J male mice are subjected to a high-fat diet (HFD)-supplemented or not with R. canina flesh for 18 weeks. The results indicated that the R. canina flesh exerts a preventive effect on HFD-induced obesity with a significant reduction in body-weight gain and an improvement of hyperglycemia and insulin resistance caused by a HFD. At the tissue level, subcutaneous white adipose tissue exhibits a higher number of smaller adipocytes, with decreased lipogenesis. On its side, the liver shows a significant decrease in lipid droplet content and in the expression of genes related to lipogenesis, fatty acid oxidation, and glucose metabolism. Finally, the data suggest that most of these effects agree with the presence of a putative Perosxisome proliferator-activated receptor gamma (PPARγ) antagonist in the R. canina flesh. CONCLUSIONS: R. canina flesh dietary supplementation slows down the steatotic effect of a HFD at least in part through the regulation of the transcriptional activity of PPARγ.


Assuntos
Fármacos Antiobesidade , Rosa , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , PPAR gama/metabolismo , Rosa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/metabolismo , Fígado/metabolismo
3.
Cancers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438613

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating mutation. However, this treatment is not curative due to primary and secondary resistance such as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3 (STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs' resistant models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound (-)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs' resistance. We show that G28's cytotoxicity is independent of TKIs' resistance mechanisms displaying synergistic effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M-) model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models. Our results provide the bases for further investigation of G28 in combination with TKIs to overcome the EGFR TKI resistance in NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA