Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(14): 22170-22191, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265988

RESUMO

The design of photonic crystals with complete bandgaps has recently received considerable research focus for numerous reasons. This work leverages well-known nonlinear programming techniques to alleviate the non-smoothness caused by degenerate eigenvalues such that topology optimization problems can be solved with the open-source IPOPT software. A fully-vectorial plane wave expansion technique is used with an iterative eigensolver to efficiently predict dispersion properties of candidate structures. Nonlinear programming is employed to solve the inverse problem of designing three-dimensional periodic structures that exhibit complete two-dimensional (2D) and three-dimensional (3D) photonic bandgaps. Mesh refinement is performed to alleviate the large computational burden of designing and analyzing photonic crystals, and a periodic density filter is implemented to impose a minimum feature size for manufacturability considerations.

2.
Sci Adv ; 5(9): eaaw1937, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31598550

RESUMO

Materials with a stochastic microstructure, like foams, typically exhibit low mechanical stiffness, whereas lattices with a designed microarchitecture often show notably improved stiffness. These periodic architected materials have previously been designed by rule, using the Maxwell criterion to ensure that their deformation is dominated by the stretching of their struts. Classical designs following this rule tend to be anisotropic, with stiffness depending on the load orientation, but recently, isotropic designs have been reported by superimposing complementary anisotropic lattices. We have designed stiff isotropic lattices de novo with topology optimization, an approach based on continuum finite element analysis. Here, we present results of experiments on these lattices, fabricated by additive manufacturing, that validate predictions of their performance and demonstrate that they are as efficient as those designed by rule, despite appearing to violate the Maxwell criterion. These findings highlight the enhanced potential of topology optimization to design materials with unprecedented properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA