Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(21): 3825-3837, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37037605

RESUMO

Behavioral studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. We demonstrated previously that the major cortical associative areas serving motion processing, like middle temporal complex (MT+), visual cortex area 6 (V6), and PIVC in adults, show selective responses to coherent flow in 8-week-old infants. Here, we study the BOLD response to the same motion stimuli in 5-week-old infants (four females and four males) and compare the maturation between these two ages. The results show that MT+ and PIVC areas show a similar motion response at 5 and 8 weeks, whereas response in the V6 shows a reduced BOLD response to motion at 5 weeks, and cuneus associative areas are not identifiable at this young age. In infants and in adults, primary visual cortex (V1) does not show a selectivity for coherent motion but shows very fast development between 5 and 8 weeks of age in response to the appearance of motion stimuli. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas but not between primary cortex and temporo-occipital and posterior-insular cortices. The results are consistent with a differential developmental trajectory of motion area respect to other occipital regions, probably reflecting also a different development trajectory of the central and peripheral visual field.SIGNIFICANCE STATEMENT How the cortical visual areas attain the specialization that we observed in human adults in the first few months of life is unknown. However, this knowledge is crucial to understanding the consequence of perinatal brain damage and its outcome. Here, we show that motion selective areas are already functioning well in 5-week-old infants with greater responses for detecting coherent motion over random motion, suggesting that very little experience is needed to attain motion selectivity.


Assuntos
Lesões Encefálicas , Percepção de Movimento , Córtex Motor , Adulto , Recém-Nascido , Feminino , Masculino , Gravidez , Humanos , Lactente , Conhecimento , Movimento (Física) , Estimulação Luminosa , Imageamento por Ressonância Magnética
2.
NMR Biomed ; 37(1): e5039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714527

RESUMO

In this study, we aimed to develop a fast and robust high-resolution technique for clinically feasible electrical properties tomography based on water content maps (wEPT) using Quantitative Transient-state Imaging (QTI), a multiparametric transient state-based method that is similar to MR fingerprinting. Compared with the original wEPT implementation based on standard spin-echo acquisition, QTI provides robust electrical properties quantification towards B1 + inhomogeneities and full quantitative relaxometry data. To validate the proposed approach, 3D QTI data of 12 healthy volunteers were acquired on a 1.5 T scanner. QTI-provided T1 maps were used to compute water content maps of the tissues using an empirical relationship based on literature ex-vivo measurements. Assuming that electrical properties are modulated mainly by tissue water content, the water content maps were used to derive electrical conductivity and relative permittivity maps. The proposed technique was compared with a conventional phase-only Helmholtz EPT (HH-EPT) acquisition both within whole white matter, gray matter, and cerebrospinal fluid masks, and within different white and gray matter subregions. In addition, QTI-based wEPT was retrospectively applied to four multiple sclerosis adolescent and adult patients, compared with conventional contrast-weighted imaging in terms of lesion delineation, and quantitatively assessed by measuring the variation of electrical properties in lesions. Results obtained with the proposed approach agreed well with theoretical predictions and previous in vivo findings in both white and gray matter. The reconstructed maps showed greater anatomical detail and lower variability compared with standard phase-only HH-EPT. The technique can potentially improve delineation of pathology when compared with conventional contrast-weighted imaging and was able to detect significant variations in lesions with respect to normal-appearing tissues. In conclusion, QTI can reliably measure conductivity and relative permittivity of brain tissues within a short scan time, opening the way to the study of electric properties in clinical settings.


Assuntos
Imageamento por Ressonância Magnética , Água , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Tomografia , Tomografia Computadorizada por Raios X , Condutividade Elétrica , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
3.
NMR Biomed ; 37(6): e5114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390667

RESUMO

A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Bainha de Mielina/metabolismo , Criança , Masculino , Feminino , Pré-Escolar , Lactente , Imagem de Tensor de Difusão , Água/química , Água Corporal , Imageamento por Ressonância Magnética
4.
Cereb Cortex ; 33(3): 729-739, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271703

RESUMO

Relaxation times and morphological information are fundamental magnetic resonance imaging-derived metrics of the human brain that reflect the status of the underlying tissue. Magnetic resonance fingerprinting (MRF) enables simultaneous acquisition of T1 and T2 maps inherently aligned to the anatomy, allowing whole-brain relaxometry and morphometry in a single scan. In this study, we revealed the feasibility of 3D MRF for simultaneous brain structure-wise morphometry and relaxometry. Comprehensive test-retest scan analyses using five 1.5-T and three 3.0-T systems from a single vendor including different scanner types across 3 institutions demonstrated that 3D MRF-derived morphological information and relaxation times are highly repeatable at both 1.5 T and 3.0 T. Regional cortical thickness and subcortical volume values showed high agreement and low bias across different field strengths. The ability to acquire a set of regional T1, T2, thickness, and volume measurements of neuroanatomical structures with high repeatability and reproducibility facilitates the ability of longitudinal multicenter imaging studies to quantitatively monitor changes associated with underlying pathologies, disease progression, and treatments.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
5.
Neuroimage ; 260: 119454, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810938

RESUMO

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.


Assuntos
Sobrecarga de Ferro , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Biomarcadores , Progressão da Doença , Humanos , Ferro , Sobrecarga de Ferro/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Sintomas Prodrômicos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/patologia
6.
Radiol Med ; 127(9): 950-959, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35984559

RESUMO

PURPOSE: To compare the characteristics detected by 7Tesla (7 T) MR and the histological composition of ex-vivo specimens from lesions diagnosed at preoperative CT scan as Pancreatic Ductal Adenocarcinoma (PDAC). MATERIALS AND METHODS: Ten pancreatic specimens were examined. The 7 T imaging protocol included both morphologic and quantitative sequences; the latter was acquired by conventional methods and a novel multiparametric method, the magnetic resonance fingerprinting (MRF) sequence. Two radiologists reviewed the images to: (1) evaluate the quality of the morphological and quantitative sequences by assigning an "image consistency score" on a 4-point scale; (2) identify the lesion, recording its characteristics; (3) perform the quantitative analysis on "target lesion" and "non target tissue". Finally, the specimen was analysed by two pathologists. RESULTS: Seven out of 10 lesions were PDAC, 2/10 were biliary carcinomas, whereas one lesion was an ampullary adenocarcinoma. The quality of the morphological sequences was judged "excellent". The "image consistency score" for the conventional quantitative sequences and MRF were 2.8 ± 0.42 and 2.9 ± 0.57; the "overall MR examination score" was 3.5 ± 0.53. A statistical correlation was found between the relaxation time values of conventional and MRF T1-weighted sequences (p < 0.0001), as well as between conventional and MRF fat- and water-fraction maps (p < 0.05). The "target lesion" and "non target tissue" relaxation time values were statistically different according to conventional T1-, T2-weighted, and MRF T1-weighted sequences. CONCLUSIONS: Conventional T1-, T2-weighted sequences and MRF derived relaxometries may be useful in differentiating between tumour and non-target pancreatic tissue. Moreover, the MRF sequence can be used to obtain reliable relaxation time data.


Assuntos
Adenocarcinoma , Imageamento por Ressonância Magnética , Adenocarcinoma/diagnóstico por imagem , Correlação de Dados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Estudos Prospectivos , Água
7.
Neuroimage ; 244: 118574, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508897

RESUMO

Functional Quantitative Susceptibility Mapping (fQSM) allows for the quantitative measurement of time-varying magnetic susceptibility across cortical and subcortical brain structures with a potentially higher spatial specificity than conventional fMRI. While the usefulness of fQSM with General Linear Model and "On/Off" paradigms has been assessed, little is known about the potential applications and limitations of this technique in more sophisticated experimental paradigms and analyses, such as those currently used in modern neuroimaging. To thoroughly characterize fQSM activations, here we used 7T MRI, tonotopic mapping, as well as univariate (i.e., GLM and population Receptive Field) and multivariate (Representational Similarity Analysis; RSA) analyses. Although fQSM detected less tone-responsive voxels than fMRI, they were more consistently localized in gray matter. Also, the majority of active gray matter voxels exhibited negative fQSM response, signaling the expected oxyhemoglobin increase, whereas positive fQSM activations were mainly in white matter. Though fMRI- and fQSM-based tonotopic maps were overall comparable, the representation of frequency tunings in tone-sensitive regions was significantly more balanced for fQSM. Lastly, RSA revealed that frequency information from the auditory cortex could be successfully retrieved by using either methods. Overall, fQSM produces complementary results to conventional fMRI, as it captures small-scale variations in the activation pattern which inform multivariate measures. Although positive fQSM responses deserve further investigation, they do not impair the interpretation of contrasts of interest. The quantitative nature of fQSM, its spatial specificity and the possibility to simultaneously acquire canonical fMRI support the use of this technique for longitudinal and multicentric studies and pre-surgical mapping.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Córtex Auditivo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Meios de Contraste , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Modelos Lineares , Masculino , Substância Branca/diagnóstico por imagem
8.
Neuroimage ; 226: 117573, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221451

RESUMO

Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accuracy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole brain using spiral projection k-space trajectories. Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems (3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived PD T1 and T2 maps to an anatomical atlas, coefficients of variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated a high repeatability (CVs 0.7-1.3% for T1, 2.0-7.8% for T2, 1.4-2.5% for normalized PD) and reproducibility (CVs of 2.0-5.8% for T1, 7.4-10.2% for T2, 5.2-9.2% for normalized PD) in gray and white matter. Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. Three-dimensional MRF obtains highly repeatable and reproducible estimations of T1 and T2, supporting the translation of MRF-based fast quantitative imaging into clinical applications.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes
9.
Magn Reson Med ; 84(5): 2606-2615, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32368835

RESUMO

PURPOSE: To obtain three-dimensional (3D), quantitative and motion-robust imaging with magnetic resonance fingerprinting (MRF). METHODS: Our acquisition is based on a 3D spiral projection k-space scheme. We compared different orderings of trajectory interleaves in terms of rigid motion-correction robustness. In all tested orderings, we considered the whole dataset as a sum of 56 segments of 7-s duration, acquired sequentially with the same flip angle schedule. We performed a separate image reconstruction for each segment, producing whole-brain navigators that were aligned to the first segment using normalized correlation. The estimated rigid motion was used to correct the k-space data, and the aligned data were matched with the dictionary to obtain motion-corrected maps. RESULTS: A significant improvement on the motion-affected maps after motion correction is evident with the suppression of motion artifacts. Correlation with the motionless baseline improved by 20% on average for both T1 and T2 estimations after motion correction. In addition, the average motion-induced quantification bias of 70 ms for T1 and 18 ms for T2 values was reduced to 12 ms and 6 ms, respectively, improving the reliability of quantitative estimations. CONCLUSION: We established a method that allows correcting 3D rigid motion on a 7-s timescale during the reconstruction of MRF data using self-navigators, improving the image quality and the quantification robustness.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Movimento (Física) , Reprodutibilidade dos Testes , Estudos Retrospectivos
10.
Neuroimage ; 197: 557-564, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075389

RESUMO

Quantitative Susceptibility Mapping (QSM) provides a way of measuring iron concentration and myelination non-invasively and has the potential of becoming a tool of paramount importance in the study of a host of different pathologies. However, several experimental factors and the physical properties of magnetic susceptibility (χ) can impair the reliability of QSM, and it is therefore essential to assess QSM reproducibility for repeated acquisitions and different field strength. In particular, it has recently been demonstrated that QSM measurements strongly depend on echo time (TE): the same tissue, measured on the same scanner, exhibits different apparent frequency shifts depending on the TE used. This study aims to assess the influence of TE on intra-scanner and inter-scanner reproducibility of QSM, by using MRI systems operating at 3T and 7T. To maximize intra-scanner reproducibility it is necessary to match the TEs of the acquisition protocol, but the application of this rule leads to inconsistent QSM values across scanners operating at different static magnetic field. This study however demonstrates that, provided a careful choice of acquisition parameters, and in particular by using TEs at 3T that are approximately 2.6 times longer than those at 7T, highly reproducible whole-brain χ maps can be achieved also across different scanners, which renders QSM a suitable technique for longitudinal follow-up in clinical settings and in multi-center studies.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Feminino , Humanos , Campos Magnéticos , Masculino
11.
Neuroimage ; 195: 362-372, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30923028

RESUMO

Fully-quantitative MR imaging methods are useful for longitudinal characterization of disease and assessment of treatment efficacy. However, current quantitative MRI protocols have not been widely adopted in the clinic, mostly due to lengthy scan times. Magnetic Resonance Fingerprinting (MRF) is a new technique that can reconstruct multiple parametric maps from a single fast acquisition in the transient state of the MR signal. Due to the relative novelty of this technique, the repeatability and reproducibility of quantitative measurements obtained using MRF has not been extensively studied. Our study acquired test/retest data from the brains of nine healthy volunteers, each scanned on five MRI systems (two at 3.0 T and three at 1.5 T, all from a single vendor) located at two different centers. The pulse sequence and reconstruction algorithm were the same for all acquisitions. After registration of the MRF-derived M0, T1 and T2 maps to an anatomical atlas, coefficients-of-variation (CVs) were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included test/retest, subject, field strength and site. Our analysis demonstrated an excellent repeatability (CVs of 2-3% for T1, 5-8% for T2, 3% for normalized-M0) and a good reproducibility (CVs of 3-8% for T1, 8-14% for T2, 5% for normalized-M0) in grey and white matter.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
12.
Magn Reson Med ; 81(5): 3032-3045, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30578569

RESUMO

PURPOSE: To obtain a fast and robust fat-water separation with simultaneous estimation of water T1 , fat T1 , and fat fraction maps. METHODS: We modified an MR fingerprinting (MRF) framework to use a single dictionary combination of a water and fat dictionary. A variable TE acquisition pattern with maximum TE = 4.8 ms was used to increase the fat-water separability. Radiofrequency (RF) spoiling was used to reduce the size of the dictionary by reducing T2 sensitivity. The technique was compared both in vitro and in vivo to an MRF method that incorporated 3-point Dixon (DIXON MRF), as well as Cartesian IDEAL with different acquisition parameters. RESULTS: The proposed dictionary-based fat-water separation technique (DBFW MRF) successfully provided fat fraction, water, and fat T1 , B0 , and B1+ maps both in vitro and in vivo. The fat fraction and water T1 values obtained with DBFW MRF show excellent agreement with DIXON MRF as well as with the reference values obtained using a Cartesian IDEAL with a long TR (concordance correlation coefficient: 0.97/0.99 for fat fraction-water T1 ). Whereas fat fraction values with Cartesian IDEAL were degraded in the presence of T1 saturation, MRF methods successfully estimated and accounted for T1 in the fat fraction estimates. CONCLUSION: The DBFW MRF technique can successfully provide T1 and fat fraction quantification in under 20 s per slice, intrinsically correcting T1 biases typical of fast Dixon techniques. These features could improve the diagnostic quality and use of images in presence of fat.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Água/química , Algoritmos , Análise de Fourier , Voluntários Saudáveis , Humanos , Joelho/diagnóstico por imagem , Modelos Estatísticos , Imagens de Fantasmas , Valores de Referência , Reprodutibilidade dos Testes
13.
PLoS Biol ; 13(9): e1002260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418729

RESUMO

In adults, motion perception is mediated by an extensive network of occipital, parietal, temporal, and insular cortical areas. Little is known about the neural substrate of visual motion in infants, although behavioural studies suggest that motion perception is rudimentary at birth and matures steadily over the first few years. Here, by measuring Blood Oxygenated Level Dependent (BOLD) responses to flow versus random-motion stimuli, we demonstrate that the major cortical areas serving motion processing in adults are operative by 7 wk of age. Resting-state correlations demonstrate adult-like functional connectivity between the motion-selective associative areas, but not between primary cortex and temporo-occipital and posterior-insular cortices. Taken together, the results suggest that the development of motion perception may be limited by slow maturation of the subcortical input and of the cortico-cortical connections. In addition they support the existence of independent input to primary (V1) and temporo-occipital (V5/MT+) cortices very early in life.


Assuntos
Córtex Cerebral/fisiologia , Percepção de Movimento , Desenvolvimento Infantil , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino
14.
Curr Neurol Neurosci Rep ; 18(6): 31, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679161

RESUMO

PURPOSE OF REVIEW: With a high signal-to-noise ratio, unparalleled spatial resolution, and improved contrasts, ultra-high field MR (≥ 7 T) has great potential in depicting the normal radiological anatomy of smaller structures in the brain and can also provide more information about morphological, quantitative, and metabolic changes associated with a wide range of brain disorders. By focusing attention on specific brain regions believed to be associated with early pathological change, or by more closely inspecting recognized foci of brain pathology, ultra-high field MR can improve the accuracy and sensitivity of neuroimaging. This article reviews recent studies at ultra-high field about Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). RECENT FINDINGS: The research on AD has mainly focused on detecting the thinning of hippocampal layers and the susceptibility effect supposed to be related to beta-amyloid deposition. In patients with PD, atypical parkinsonisms and subjects at risk of developing motor symptoms of Parkinson's disease, the main aim was to detect changes in the substantia nigra, probably related to increased iron deposition. In patients with ALS, both brain and spinal cord were investigated, with the aim of finding changes in the primary motor cortex and corticospinal tract which reflect neurodegeneration and neuroinflammation. Ultra-high field MR was shown to be useful for detecting subtle brain changes in patients with AD, and possible new diagnostic biomarkers in patients with PD and ALS were discovered. The ability of 7 T MR to provide prognostic biomarkers in subjects at risk for developing synucleinopathies is currently under evaluation.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem/métodos
15.
MAGMA ; 31(2): 257-267, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28933028

RESUMO

OBJECTIVE: Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields. MATERIALS AND METHODS: The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects. RESULTS: Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception. CONCLUSION: This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Lobo Occipital/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Adulto , Ar , Algoritmos , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Ondas de Rádio , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
16.
Neural Plast ; 2018: 8472807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30595689

RESUMO

Reorganization of somatosensory function influences the clinical recovery of subjects with congenital unilateral brain lesions. Ultrahigh-field (UHF) functional MRI (fMRI) with the use of a 7 T magnet has the potential to contribute fundamentally to the current knowledge of such plasticity mechanisms. The purpose of this study was to obtain preliminary information on the possible advantages of the study of somatosensory reorganization at UHF fMRI. We enrolled 6 young adults (mean age 25 ± 6 years) with congenital unilateral brain lesions (4 in the left hemisphere and 2 in the right hemisphere; 4 with perilesional motor reorganization and 2 with contralesional motor reorganization) and 7 healthy age-matched controls. Nondominant hand sensory assessment included stereognosis and 2-point discrimination. Task-dependent fMRI was performed to elicit a somatosensory activation by using a safe and quantitative device developed ad hoc to deliver a reproducible gentle tactile stimulus to the distal phalanx of thumb and index fingers. Group analysis was performed in the control group. Individual analyses in the native space were performed with data of hemiplegic subjects. The gentle tactile stimulus showed great accuracy in determining somatosensory cortex activation. Single-subject gentle tactile stimulus showed an S1 activation in the postcentral gyrus and an S2 activation in the inferior parietal insular cortex. A correlation emerged between an index of S1 reorganization (distance between expected and reorganized S1) and sensory deficit (p < 0.05) in subjects with hemiplegia, with higher distance related to a more severe sensory deficit. Increase in spatial resolution at 7 T allows a better localization of reorganized tactile function validated by its correlation with clinical measures. Our results support the S1 early-determination hypothesis and support the central role of topography of reorganized S1 compared to a less relevant S1-M1 integration.


Assuntos
Hemiplegia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Adulto , Feminino , Hemiplegia/congênito , Hemiplegia/fisiopatologia , Humanos , Masculino , Córtex Somatossensorial/fisiopatologia , Adulto Jovem
17.
Neural Plast ; 2018: 6950547, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147718

RESUMO

Little is known about the action observation network (AON) in children with unilateral cerebral palsy (UCP). Using fMRI, we aimed to explore AON and sensory-motor network (SMN) in UCP children and compare them to typically developed (TD) children and analyse the relationship between AON (re-)organization and several neurophysiological and clinical measures. Twelve UCP children were assessed with clinical scales and transcranial magnetic stimulation (TMS). For the fMRI study, they underwent a paradigm based on observation of complex and simple object-manipulation tasks executed by dominant and nondominant hand. Moreover, UCP and TD children carried out a further fMRI session to explore SMN in both an active motor and passive sensory task. AON in the UCP group showed higher lateralization, negatively related to performances on clinical scales, and had greater activation of unaffected hemisphere as compared to the bilateral representation in the TD group. In addition, a good congruence was found between bilateral or contralateral activation of AON and activation of SMN and TMS data. These findings indicate that our paradigm might be useful in exploring AON and the response to therapy in UCP subjects.


Assuntos
Encéfalo/fisiopatologia , Paralisia Cerebral/fisiopatologia , Percepção de Movimento/fisiologia , Plasticidade Neuronal , Adolescente , Mapeamento Encefálico , Criança , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Córtex Sensório-Motor/fisiopatologia , Estimulação Magnética Transcraniana
18.
Hippocampus ; 27(5): 481-494, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28188659

RESUMO

The hippocampus is one of the most interesting and studied brain regions because of its involvement in memory functions and its vulnerability in pathological conditions, such as neurodegenerative processes. In the recent years, the increasing availability of Magnetic Resonance Imaging (MRI) scanners that operate at ultra-high field (UHF), that is, with static magnetic field strength ≥7T, has opened new research perspectives. Compared to conventional high-field scanners, these systems can provide new contrasts, increased signal-to-noise ratio and higher spatial resolution, thus they may improve the visualization of very small structures of the brain, such as the hippocampal subfields. Studying the morphometry of the hippocampus is crucial in neuroimaging research because changes in volume and thickness of hippocampal subregions may be relevant in the early assessment of pathological cognitive decline and Alzheimer's Disease (AD). The present review provides an overview of the manual, semi-automated and fully automated methods that allow the assessment of hippocampal subfield morphometry at UHF MRI, focusing on the different hippocampal segmentation produced. © 2017 Wiley Periodicals, Inc.


Assuntos
Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação
19.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28902421

RESUMO

The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Feminino , Humanos , Masculino
20.
J Magn Reson Imaging ; 44(4): 1048-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27042956

RESUMO

PURPOSE: To predict local and global specific absorption rate (SAR) in individual subjects. MATERIALS AND METHODS: SAR was simulated for a head volume coil for two imaging sequences: axial T1-weighted "zero" time-of-echo (ZTE) sequence, sagittal T2-weighted fluid attenuated inversion recovery (FLAIR). Two head models (one adult, one child) were simulated inside the coil. For 19 adults and 27 children, measured B1 (+) maps were acquired, and global (head) SAR estimated by the system was recorded. We performed t-test between the B1 (+) in models and human subjects. The B1 (+) maps of individual subjects were used to scale the SAR simulated on the models, to predict local and global (head) SAR. A phantom experiment was performed to validate SAR prediction, using a fiberoptic temperature probe to measure the temperature rise due to ZTE scanning. RESULTS: The normalized B1 (+) standard deviation in subjects was not significantly different from that of the models (P > 0.68 and P > 0.54). The rise in temperature generated in the phantom by ZTE was 0.3°C; from the heat equation it followed that the temperature-based measured SAR was 2.74 W/kg, while the predicted value was 3.1 W/kg. CONCLUSION: For ZTE and FLAIR, limits on maximum local and global SAR were met in all subjects, both adults and children. To enhance safety in adults and children with 7.0 Tesla MR systems, we suggest the possibility of using SAR prediction. J. MAGN. RESON. IMAGING 2016;44:1048-1055.


Assuntos
Absorção de Radiação/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Criança , Simulação por Computador , Feminino , Humanos , Campos Magnéticos , Doses de Radiação , Proteção Radiológica/métodos , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA