Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 13(7): 1137-1143, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859865

RESUMO

SETD2, a lysine N-methyltransferase, is a histone methyltransferase that plays an important role in various cellular processes and was identified as a target of interest in multiple myeloma that features a t(4,14) translocation. We recently reported the discovery of a novel small-molecule SETD2 inhibitor tool compound that is suitable for preclinical studies. Herein we describe the conformational-design-driven evolution of the advanced chemistry lead, which resulted in compounds appropriate for clinical evaluation. Further optimization of this chemical series led to the discovery of EZM0414, which is a potent, selective, and orally bioavailable inhibitor of SETD2 with good pharmacokinetic properties and robust pharmacodynamic activity in a mouse xenograft model.

2.
ACS Med Chem Lett ; 12(10): 1539-1545, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34671445

RESUMO

SET domain-containing protein 2 (SETD2), a histone methyltransferase, has been identified as a target of interest in certain hematological malignancies, including multiple myeloma. This account details the discovery of EPZ-719, a novel and potent SETD2 inhibitor with a high selectivity over other histone methyltransferases. A screening campaign of the Epizyme proprietary histone methyltransferase-biased library identified potential leads based on a 2-amidoindole core. Structure-based drug design (SBDD) and drug metabolism/pharmacokinetics (DMPK) optimization resulted in EPZ-719, an attractive tool compound for the interrogation of SETD2 biology that enables in vivo target validation studies.

3.
PLoS One ; 13(6): e0197372, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856759

RESUMO

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Carcinogênese/genética , Histona-Lisina N-Metiltransferase/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Interferência de RNA , Bibliotecas de Moléculas Pequenas/farmacologia
4.
ACS Med Chem Lett ; 7(2): 134-8, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985287

RESUMO

SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA