RESUMO
The evolutionary history of sour taste has been little studied. Through a combination of literature review and trait mapping on the vertebrate phylogenetic tree, we consider the origin of sour taste, potential cases of the loss of sour taste, and those factors that might have favoured changes in the valence of sour taste-from aversive to appealing. We reconstruct sour taste as having evolved in ancient fish. By contrast to other tastes, sour taste does not appear to have been lost in any major vertebrate taxa. For most species, sour taste is aversive. Animals, including humans, that enjoy the sour taste triggered by acidic foods are exceptional. We conclude by considering why sour taste evolved, why it might have persisted as vertebrates made the transition to land and what factors might have favoured the preference for sour-tasting, acidic foods, particularly in hominins, such as humans.
Assuntos
Paladar , Animais , Humanos , FilogeniaRESUMO
Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.].
Assuntos
Formigas , Genômica , Animais , Abelhas , Aves/genética , Genoma , FilogeniaRESUMO
BACKGROUND: The most species-rich radiation of animal life in the 66 million years following the Cretaceous extinction event is that of schizophoran flies: a third of fly diversity including Drosophila fruit fly model organisms, house flies, forensic blow flies, agricultural pest flies, and many other well and poorly known true flies. Rapid diversification has hindered previous attempts to elucidate the phylogenetic relationships among major schizophoran clades. A robust phylogenetic hypothesis for the major lineages containing these 55,000 described species would be critical to understand the processes that contributed to the diversity of these flies. We use protein encoding sequence data from transcriptomes, including 3145 genes from 70 species, representing all superfamilies, to improve the resolution of this previously intractable phylogenetic challenge. RESULTS: Our results support a paraphyletic acalyptrate grade including a monophyletic Calyptratae and the monophyly of half of the acalyptrate superfamilies. The primary branching framework of Schizophora is well supported for the first time, revealing the primarily parasitic Pipunculidae and Sciomyzoidea stat. rev. as successive sister groups to the remaining Schizophora. Ephydroidea, Drosophila's superfamily, is the sister group of Calyptratae. Sphaeroceroidea has modest support as the sister to all non-sciomyzoid Schizophora. We define two novel lineages corroborated by morphological traits, the 'Modified Oviscapt Clade' containing Tephritoidea, Nerioidea, and other families, and the 'Cleft Pedicel Clade' containing Calyptratae, Ephydroidea, and other families. Support values remain low among a challenging subset of lineages, including Diopsidae. The placement of these families remained uncertain in both concatenated maximum likelihood and multispecies coalescent approaches. Rogue taxon removal was effective in increasing support values compared with strategies that maximise gene coverage or minimise missing data. CONCLUSIONS: Dividing most acalyptrate fly groups into four major lineages is supported consistently across analyses. Understanding the fundamental branching patterns of schizophoran flies provides a foundation for future comparative research on the genetics, ecology, and biocontrol.
Assuntos
Drosophila/genética , Evolução Molecular , Filogenia , Transcriptoma , Animais , Drosophila/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Larva/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Análise de Sequência de DNARESUMO
Bombyliidae is a very species-rich and widespread family of parasitoid flies with more than 250 genera classified into 17 extant subfamilies. However, little is known about their evolutionary history or how their present-day diversity was shaped. Transcriptomes of 15 species and anchored hybrid enrichment (AHE) sequence captures of 86 species, representing 94 bee fly species and 14 subfamilies, were used to reconstruct the phylogeny of Bombyliidae. We integrated data from transcriptomes across each of the main lineages in our AHE tree to build a data set with more genes (550 loci versus 216 loci) and higher support levels. Our overall results show strong congruence with the current classification of the family, with 11 out of 14 included subfamilies recovered as monophyletic. Heterotropinae and Mythicomyiinae are successive sister groups to the remainder of the family. We examined the evolution of key morphological characters through our phylogenetic hypotheses and show that neither the "sand chamber subfamilies" nor the "Tomophthalmae" are monophyletic in our phylogenomic analyses. Based on our results, we reinstate two tribes at the subfamily level (Phthiriinae stat. rev. and Ecliminae stat. rev.) and we include the genus Sericosoma Macquart (previously incertae sedis) in the subfamily Oniromyiinae, bringing the total number of bee fly subfamilies to 19. Our dating analyses indicate a Jurassic origin of the family (165-194 Ma), with the sand chamber evolving early in bee fly evolution, in the late Jurassic or mid-Cretaceous (100-165 Ma). We hypothesize that the angiosperm radiation and the hothouse climate established during the late Cretaceous accelerated the diversification of bee flies, by providing an expanded range of resources for the parasitoid larvae and nectarivorous adults.
Assuntos
Abelhas/classificação , Biodiversidade , Evolução Molecular , Larva/fisiologia , Filogenia , Transcriptoma , Animais , Abelhas/genética , Abelhas/fisiologia , Larva/genética , Análise de Sequência de DNARESUMO
The ecological dynamics of cities are influenced not only by geophysical and biological factors, but also by aspects of human society. In cities around the world, a pattern of higher biodiversity in affluent neighbourhoods has been termed 'the luxury effect'. The luxury effect has been found globally regarding plant diversity and canopy or vegetative cover. Fewer studies have considered the luxury effect and animals, yet it has been recognized in the distributions of birds, bats, lizards and indoor arthropods. Higher socioeconomic status correlates with higher biodiversity resulting from many interacting factors-the creation and maintenance of green space on private and public lands, the tendency of both humans and other species to favour environmentally desirable areas, while avoiding environmental burdens, as well as enduring legacy effects. The luxury effect is amplified in arid cities and as neighbourhoods age, and reduced in tropical areas. Where the luxury effect exists, benefits of urban biodiversity are unequally distributed, particularly in low-income neighbourhoods with higher minority populations. The equal distribution of biodiversity in cities, and thus the elimination of the luxury effect, is a worthy societal goal.
Assuntos
Biodiversidade , Fatores Socioeconômicos , Animais , Cidades , Ecossistema , Humanos , PlantasRESUMO
Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement.
Assuntos
Variação Genética , Folículo Piloso/parasitologia , Ácaros/genética , Ácaros/fisiologia , África , Animais , Ásia , Austrália , DNA Mitocondrial/química , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Genoma Mitocondrial/genética , Geografia , Haplótipos , Especificidade de Hospedeiro , Humanos , América Latina , Ácaros/classificação , América do Norte , Filogenia , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.
Assuntos
Artrópodes , Animais , Cidades , EcossistemaRESUMO
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation--lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)--and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.
Assuntos
Adaptação Biológica/genética , Evolução Biológica , Dípteros/anatomia & histologia , Dípteros/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Biblioteca Gênica , Funções Verossimilhança , MicroRNAs/genética , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Globally, human house types are diverse, varying in shape, size, roof type, building materials, arrangement, decoration and many other features. Here we offer the first rigorous, global evaluation of the factors that influence the construction of traditional (vernacular) houses. We apply macroecological approaches to analyse data describing house features from 1900 to 1950 across 1000 societies. Geographic, social and linguistic descriptors for each society were used to test the extent to which key architectural features may be explained by the biophysical environment, social traits, house features of neighbouring societies or cultural history. We find strong evidence that some aspects of the climate shape house architecture, including floor height, wall material and roof shape. Other features, particularly ground plan, appear to also be influenced by social attributes of societies, such as whether a society is nomadic, polygynous or politically complex. Additional variation in all house features was predicted both by the practices of neighouring societies and by a society's language family. Collectively, the findings from our analyses suggest those conditions under which traditional houses offer solutions to architects seeking to reimagine houses in light of warmer, wetter or more variable climates.
RESUMO
Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence. This review of the current consensus of insect relationships provides a foundation for comparative study and offers a framework to evaluate incoming genomic evidence. Notable recent phylogenetic successes include the resolution of Holometabola, including the identification of the enigmatic Strepsiptera as a beetle relative and the early divergence of Hymenoptera; the recognition of hexapods as a crustacean lineage within Pancrustacea; and the elucidation of Dictyoptera orders, with termites placed as social cockroaches. Regions of the tree that require further investigation include the earliest winged insects (Palaeoptera) and Polyneoptera (orthopteroid lineages).
Assuntos
Insetos/classificação , Filogenia , Animais , Genoma de Inseto , Insetos/genéticaRESUMO
Mosquitoes have profoundly affected human history and continue to threaten human health through the transmission of a diverse array of pathogens. The phylogeny of mosquitoes has remained poorly characterized due to difficulty in taxonomic sampling and limited availability of genomic data beyond the most important vector species. Here, we used phylogenomic analysis of 709 single copy ortholog groups from 256 mosquito species to produce a strongly supported phylogeny that resolves the position of the major disease vector species and the major mosquito lineages. Our analyses support an origin of mosquitoes in the early Triassic (217 MYA [highest posterior density region: 188-250 MYA]), considerably older than previous estimates. Moreover, we utilize an extensive database of host associations for mosquitoes to show that mosquitoes have shifted to feeding upon the blood of mammals numerous times, and that mosquito diversification and host-use patterns within major lineages appear to coincide in earth history both with major continental drift events and with the diversification of vertebrate classes.
Assuntos
Culicidae , Animais , Humanos , Culicidae/genética , Filogenia , Mosquitos Vetores/genética , Mamíferos , Vertebrados , Comportamento AlimentarRESUMO
Asiloidea are a group of 9 lower brachyceran fly families, considered to be the closest relative to the large Metazoan radiation Eremoneura (Cyclorrhapha+Empidoidea). The evidence for asiloid monophyly is limited, and few characters define the relationships between the families of Asiloidea and Eremoneura. Additionally, enigmatic genera, Hilarimorpha and Apystomyia, retain morphological characters of both asiloids and higher flies. We use the nuclear protein-coding gene CAD and 28S rDNA to test the monophyly of Asiloidea and to resolve its relationship to Eremoneura. We explore the effects of taxon sampling on support values and topological stability, the resolving power of additional genes, and hypothesis testing using four-cluster likelihood mapping. We find that: (1) the 'asiloid' genus Apystomyia is sister to Cyclorrhapha, (2) the remaining asiloids are monophyletic at the exclusion of the family Bombyliidae, and (3) our best estimate of relationships places the asiloid flies excluding Bombyliidae as the sister-group to Eremoneura, though high support is lacking.
Assuntos
Dípteros/genética , Evolução Molecular , Filogenia , Animais , Análise por Conglomerados , DNA Ribossômico/genética , Dípteros/classificação , Genes de Insetos , Funções Verossimilhança , Proteínas Nucleares/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNARESUMO
BACKGROUND: Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. RESULTS: Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. CONCLUSION: These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics.
Assuntos
Genes de Insetos , Himenópteros/genética , Insetos/classificação , Insetos/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Evolução Molecular , Insetos/crescimento & desenvolvimento , Funções Verossimilhança , Metamorfose Biológica/genéticaRESUMO
Cities around the world have converged on structural and environmental characteristics that exert similar eco-evolutionary pressures on local communities. However, evaluating how urban biodiversity responds to urban intensification remains poorly understood because of the challenges in capturing the diversity of a range of taxa within and across multiple cities from different types of urbanization. Here we utilize a growing resource-citizen science data. We analyzed 66,209 observations representing 5,209 species generated by the City Nature Challenge project on the iNaturalist platform, in conjunction with remote sensing (NLCD2011) environmental data, to test for urban biotic homogenization at increasing levels of urban intensity across 14 metropolitan cities in the United States. Based on community composition analyses, we found that while similarities occur to an extent, urban biodiversity is often much more a reflection of the taxa living locally in a region. At the same time, the communities found in high-intensity development were less explained by regional context than communities from other land cover types were. We also found that the most commonly observed species are often shared between cities and are non-endemic and/or have a distribution facilitated by humans. This study highlights the value of citizen science data in answering questions in urban ecology.
RESUMO
Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolutionary relationships are poorly understood. Also, the resolution of broader arachnid phylogeny has been hindered by an underrepresentation of mite diversity in phylogenomic analyses. To further our understanding of Acari evolution, we design targeted ultraconserved genomic elements (UCEs) probes, intended for resolving the complex relationships between mite lineages and closely related arachnids. We then test our Acari UCE baits in-silico by constructing a phylogeny using 13 existing Acari genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari-specific probe kit improves the recovery of loci within mites over an existing general arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet finds mites to be non-monophyletic overall, with Opiliones (harvestmen) and Ricinuleidae (hooded tickspiders) rendering Parasitiformes paraphyletic.
Assuntos
Ácaros e Carrapatos/classificação , Ácaros e Carrapatos/genética , Biologia Computacional/métodos , Filogenia , AnimaisRESUMO
The indoor biome is a novel habitat which recent studies have shown exhibit not only high microbial diversity, but also high arthropod diversity. Here, we analyze findings from a survey of 50 houses (southeastern USA) within the context of additional survey data concerning house and room features, along with resident behavior, to explore how arthropod diversity and community composition are influenced by physical aspects of rooms and their usage, as well as the lifestyles of human residents. We found that indoor arthropod diversity is strongly influenced by access to the outdoors and carpeted rooms hosted more types of arthropods than non-carpeted rooms. Arthropod communities were similar across most room types, but basements exhibited more unique community compositions. Resident behavior such as house tidiness, pesticide usage, and pet ownership showed no significant influence on arthropod community composition. Arthropod communities across all rooms in houses exhibit trophic structure-with both generalized predators and scavengers included in the most frequently found groups. These findings suggest that indoor arthropods serve as a connection to the outdoors, and that there is still much yet to be discovered about their impact on indoor health and the unique ecological dynamics within our homes.
Assuntos
Artrópodes/fisiologia , Biodiversidade , Ecossistema , Animais , Estados UnidosRESUMO
Madagascar is an island known for its richness of endemic species, including flies. Only eight genera of bee flies (Bombyliidae), including 17 described species (the majority of which are in the subfamily Anthracinae), are known from Madagascar. Here we describe a new species of Bombyliidae from Madagascar, Thevenetimyia spinosavus Maass & Bertone sp. nov. This fly represents the first record of the genus Thevenetimyia from Madagascar and the second species recorded in the Afrotropical Region. A revised checklist of Bombyliidae in Madagascar is provided, along with an appendix of associated literature. The known bee fly species likely represent only a fraction of the true diversity on the island, which has been relatively well sampled through extensive Malaise trapping of flies in Madagascar over the past decade.
Assuntos
Dípteros/anatomia & histologia , Dípteros/classificação , Animais , Madagáscar , Masculino , Especificidade da EspécieRESUMO
Our understanding on the phylogenetic relationships of insects has been revolutionised in the last decade by the proliferation of next generation sequencing technologies (NGS). NGS has allowed insect systematists to assemble very large molecular datasets that include both model and non-model organisms. Such datasets often include a large proportion of the total number of protein coding sequences available for phylogenetic comparison. We review some early entomological phylogenomic studies that employ a range of different data sampling protocols and analyses strategies, illustrating a fundamental renaissance in our understanding of insect evolution all driven by the genomic revolution. The analysis of phylogenomic datasets is challenging because of their size and complexity, and it is obvious that the increasing size alone does not ensure that phylogenetic signal overcomes systematic biases in the data. Biases can be due to various factors such as the method of data generation and assembly, or intrinsic biological feature of the data per se, such as similarities due to saturation or compositional heterogeneity. Such biases often cause violations in the underlying assumptions of phylogenetic models. We review some of the bioinformatics tools available and being developed to detect and minimise systematic biases in phylogenomic datasets. Phylogenomic-scale data coupled with sophisticated analyses will revolutionise our understanding of insect functional genomics. This will illuminate the relationship between the vast range of insect phenotypic diversity and underlying genetic diversity. In combination with rapidly developing methods to estimate divergence times, these analyses will also provide a compelling view of the rates and patterns of lineagenesis (birth of lineages) over the half billion years of insect evolution.
Assuntos
Genoma de Inseto/genética , Genômica/tendências , Insetos/classificação , Insetos/genética , Filogenia , Animais , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.
RESUMO
Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations.