Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0295489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776262

RESUMO

Feralization of genetically engineered (GE) crops increases the risk that transgenes will become integrated into natural and naturalizing plant populations. A key assumption of the management of GE crops is that populations of escaped plants are short-lived and therefore the risks they pose are limited. However, few populations of escaped crop plants have been tracked over the long term so our understanding of their persistence in ruderal or natural landscapes is limited. We repeated a large-scale road survey of feral GE canola populations in North Dakota, USA, initially conducted in 2010. Our objectives in 2021 were to determine the current distribution of feral canola populations, and to establish the relative frequency of GE and non-GE phenotypes in populations of canola throughout North Dakota. Our results indicate that, although the incidence of feral canola was less in 2021 than 2010, escaped canola populations remain common throughout the state. The prevalence of alternate forms of GE herbicide resistance changed between surveys, and we found an overabundance of non-GE plants compared to the frequency of non-transgenic forms in cultivation. Indirect evidence of persistence includes sampling plants with multiple transgenic traits, and finding populations far from transportation routes. We conclude that feral canola populations expressing transgenic herbicide resistance are established outside of cultivation, that they may be under selection for loss of the transgene, but that they nonetheless pose long-term risks by harboring transgenes in the unmanaged landscape.


Assuntos
Produtos Agrícolas , Plantas Geneticamente Modificadas , Transgenes , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Brassica napus/genética , North Dakota , Resistência a Herbicidas/genética , Estados Unidos , Engenharia Genética , Fenótipo
2.
Am J Bot ; 100(7): 1407-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23797366

RESUMO

PREMISE OF THE STUDY: The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. METHODS: Here, we use long-term records of species' first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change ("flowering time shifts"). KEY RESULTS: Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. CONCLUSIONS: Our findings provide cross-site support for the role of phenology and climate change in explaining species' invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.


Assuntos
Mudança Climática , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Plantas/genética , Temperatura , Demografia , Filogenia , Especificidade da Espécie , Fatores de Tempo , Reino Unido , Estados Unidos
3.
Am J Bot ; 100(7): 1381-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23752756

RESUMO

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.


Assuntos
Mudança Climática , Flores/fisiologia , Magnoliopsida/classificação , Fenômenos Fisiológicos Vegetais , Especificidade da Espécie , Temperatura , Fatores de Tempo
4.
Ecology ; 93(8): 1765-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928404

RESUMO

Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.


Assuntos
Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/classificação , California , Demografia , Modelos Biológicos , Especificidade da Espécie
5.
Am J Bot ; 98(6): 935-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21613073

RESUMO

PREMISE OF THE STUDY: Climate change is associated with phenological shifts in an increasing number of organisms worldwide. However, accurate estimates of these shifts are dependent on long-term data sets that include phenological observations from before annual average temperatures began to rise. METHODS: We compared the first flowering times of native prairie plants between 2007 and 2010 with historical data recorded by O. A. Stevens from 1910 to 1961. By merging climate variable data from the same time period, it also was possible to correlate first flowering dates with associated climate variables. KEY RESULTS: Over the past 100 years, spring temperatures in the Red River Valley near Fargo, North Dakota, USA, have increased, and growing seasons have lengthened significantly. Seventy-five percent of the 178 species observed by Stevens had flowering times that were sensitive to at least one variable related to temperature or precipitation. Over the past 4 yr, 5% to 17% of the species observed have significantly shifted their first flowering time either earlier or later relative to the previous century. CONCLUSIONS: The results of this study indicate that as spring temperatures in the northern Great Plains have increased and the growing season has lengthened, some spring flowering species have advanced their first flowering time, some fall species have delayed their first flowering, and some species have not changed. Given the importance of flowering timing for reproductive success, the changing climate in the Great Plains is expected to have long-term ecological and evolutionary consequences for native plant species.


Assuntos
Mudança Climática/história , Ecossistema , Flores/fisiologia , Estações do Ano , História do Século XX , História do Século XXI , North Dakota , Chuva , Análise de Regressão , Especificidade da Espécie , Temperatura
6.
Appl Plant Sci ; 1(4)2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25202536

RESUMO

PREMISE OF THE STUDY: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. • METHODS AND RESULTS: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. • CONCLUSIONS: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity.

7.
PLoS One ; 6(4): e17641, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21532756

RESUMO

BACKGROUND: Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year. METHODOLOGY/PRINCIPAL FINDINGS: Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon's index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation. SIGNIFICANCE: Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly.


Assuntos
Biodiversidade , Genes de Plantas , Poaceae/genética , Chuva , Sequência de Bases , Primers do DNA , Meio-Oeste dos Estados Unidos , Ploidias , Reação em Cadeia da Polimerase
8.
PLoS One ; 6(10): e25736, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998689

RESUMO

Concerns regarding the commercial release of genetically engineered (GE) crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented reports of escape leading some researchers to question the environmental risks of biotech products. In this study we conducted a systematic roadside survey of canola (Brassica napus) populations growing outside of cultivation in North Dakota, USA, the dominant canola growing region in the U.S. We document the presence of two escaped, transgenic genotypes, as well as non-GE canola, and provide evidence of novel combinations of transgenic forms in the wild. Our results demonstrate that feral populations are large and widespread. Moreover, flowering times of escaped populations, as well as the fertile condition of the majority of collections suggest that these populations are established and persistent outside of cultivation.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Coleta de Dados , Alimentos Geneticamente Modificados/estatística & dados numéricos , Plantas Geneticamente Modificadas/genética , Estados Unidos
9.
Am J Bot ; 97(6): 925-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21622463

RESUMO

PREMISE OF THE STUDY: Fitness of plant hybrids often depends upon the environment, but physiological mechanisms underlying the differential responses to habitat are poorly understood. We examined physiological responses of Ipomopsis species and hybrids, including reciprocal F(1)s and F(2)s, to variation in soil moisture and nitrogen. • METHODS: To examine responses to moisture, we subjected plants to a dry-down experiment. Nitrogen was manipulated in three independent experiments, one in the field and two in common environments. • KEY RESULTS: Plants with I. tenuituba cytoplasmic background had lower optimal soil moisture for photosynthesis, appearing better adapted to dry conditions, than plants with I. aggregata cytoplasm. This result supported a prediction from prior studies. The species and hybrids did not differ greatly in physiological responses to nitrogen. An increase in soil nitrogen increased leaf nitrogen, carbon assimilation, integrated water-use efficiency, and growth, but the increases in growth were not mediated primarily by an increase in photosynthesis. In neither the field, nor in common-garden studies, did physiological responses to soil nitrogen differ detectably across plant types, although only I. aggregata and hybrids increased seed production in the field. • CONCLUSIONS: These results demonstrate differences in photosynthetic responses between reciprocal hybrids and suggest that water use is more important than nitrogen in explaining the relative photosynthetic performance of these hybrids compared to their parents.

10.
Philos Trans R Soc Lond B Biol Sci ; 358(1434): 1009-18, 2003 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-12831466

RESUMO

For species with bicellular pollen, the attrition of pollen tubes is often greatest where the style narrows at the transition between stigmatic tissue and the transmitting tissue of the style. In this region, the tubes switch from predominantly autotrophic to predominantly heterotrophic growth, the generative cell divides, the first callose plugs are produced, and, in species with RNase-type self-incompatibility (SI), incompatible tubes are arrested. We review the literature and present new findings concerning the genetic, environmental and stylar influences on the performance of pollen before and during the autotrophic-heterotrophic transition of pollen tube growth. We found that the ability of the paternal sporophyte to provision its pollen during development significantly influences pollen performance during the autotrophic growth phase. Consequently, under conditions of pollen competition, pollen selection during the autotrophic phase is acting on the phenotype of the paternal sporophyte. In a field experiment, using Cucurbita pepo, we found broad-sense heritable variation for herbivore-pathogen resistance, and that the most resistant families produced larger and better performing pollen when the paternal sporophytes were not protected by insecticides, indicating that selection during the autotrophic phase can act on traits that are not expressed by the microgametophyte. In a study of a weedy SI species, Solanum carolinense, we found that the ability of the styles to arrest self-pollen tubes at the autotrophic-heterotrophic transition changes with floral age and the presence of developing fruits. These findings have important implications for selection at the level of the microgametophyte and the evolution of mating systems of plants.


Assuntos
Cucurbita/fisiologia , Pólen/fisiologia , Solanum/fisiologia , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , Fenótipo , Pólen/genética , Reprodução , Solanum/genética , Solanum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA