Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chem Rev ; 123(21): 12039-12104, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870767

RESUMO

Kohn-Sham Density Functional Theory (KSDFT) is the most widely used electronic structure method in chemistry, physics, and materials science, with thousands of calculations cited annually. This ubiquity is rooted in the favorable accuracy vs cost balance of KSDFT. Nonetheless, the ambitions and expectations of researchers for use of KSDFT in predictive simulations of large, complicated molecular systems are confronted with an intrinsic computational cost-scaling challenge. Particularly evident in the context of first-principles molecular dynamics, the challenge is the high cost-scaling associated with the computation of the Kohn-Sham orbitals. Orbital-free DFT (OFDFT), as the name suggests, circumvents entirely the explicit use of those orbitals. Without them, the structural and algorithmic complexity of KSDFT simplifies dramatically and near-linear scaling with system size irrespective of system state is achievable. Thus, much larger system sizes and longer simulation time scales (compared to conventional KSDFT) become accessible; hence, new chemical phenomena and new materials can be explored. In this review, we introduce the historical contexts of OFDFT, its theoretical basis, and the challenge of realizing its promise via approximate kinetic energy density functionals (KEDFs). We review recent progress on that challenge for an array of KEDFs, such as one-point, two-point, and machine-learnt, as well as some less explored forms. We emphasize use of exact constraints and the inevitability of design choices. Then, we survey the associated numerical techniques and implemented algorithms specific to OFDFT. We conclude with an illustrative sample of applications to showcase the power of OFDFT in materials science, chemistry, and physics.

2.
J Phys Chem A ; 127(36): 7646-7654, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669434

RESUMO

Calculation of transition temperatures T1/2 for thermally driven spin-crossover in condensed phases is challenging, even with sophisticated state-of-the-art density functional approximations. The first issue is the accuracy of the adiabatic crossover energy difference ΔEHL between the low- and high-spin states of the bistable metal-organic complexes. The other is the proper inclusion of entropic contributions to the Gibbs free energy from the electronic and vibrational degrees of freedom. We discuss the effects of treatments of both contributions upon the calculation of thermochemical properties for a set of 20 spin-crossover materials using a Hubbard-U correction obtained from a reference ensemble spin-state. The U values obtained from a simplest bimolecular representation may overcorrect, somewhat, the ΔEHL values, hence giving somewhat excessive reduction of the T1/2 results with respect to their U = 0 values in the crystalline phase. We discuss the origins of the discrepancies by analyzing different sources of uncertainties. By use of a first-coordination-sphere approximation and the assumption that vibrational contributions from the outermost atoms in a metal-organic complex are similar in both low- and high-spin states, we achieve T1/2 results with the low-cost, widely used PBE generalized gradient density functional approximation comparable to those from the more costly, more sophisticated r2SCAN meta-generalized gradient approximation. The procedure is promising for use in high-throughput materials screening, because it combines rather low computational effort requirements with freedom from user manipulation of parameters.

3.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038712

RESUMO

In Paper I [H. Francisco, A. C. Cancio, and S. B. Trickey, J. Chem. Phys. 159, 214102 (2023)], we gave a regularization of the Tao-Mo exchange functional that removes the order-of-limits problem in the original Tao-Mo form and also eliminates the unphysical behavior introduced by an earlier regularization while essentially preserving compliance with the second-order gradient expansion. The resulting simplified, regularized (sregTM) functional delivers performance on standard molecular and solid state test sets equal to that of the earlier revised, regularized Tao-Mo functional. Here, we address de-orbitalization of that new sregTM into a pure density functional. We summarize the failures of the Mejía-Rodríguez and Trickey de-orbitalization strategy [Phys. Rev. A 96, 052512 (2017)] when used with both versions. We discuss how those failures apparently arise in the so-called z' indicator function and in substitutes for the reduced density Laplacian in the parent functionals. Then, we show that the sregTM functional can be de-orbitalized somewhat well with a rather peculiarly parameterized version of the previously used deorbitalizer. We discuss, briefly, a de-orbitalization that works in the sense of reproducing error patterns but that apparently succeeds by cancelation of major qualitative errors associated with the de-orbitalized indicator functions α and z, hence, is not recommended. We suggest that the same issue underlies the earlier finding of comparatively mediocre performance of the de-orbitalized Tao-Perdew-Staroverov-Scuseri functional. Our work demonstrates that the intricacy of such two-indicator functionals magnifies the errors introduced by the Mejía-Rodríguez and Trickey de-orbitalization approach in ways that are extremely difficult to analyze and correct.

4.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038713

RESUMO

The revised, regularized Tao-Mo (rregTM) exchange-correlation density functional approximation (DFA) [A. Patra, S. Jana, and P. Samal, J. Chem. Phys. 153, 184112 (2020) and Jana et al., J. Chem. Phys. 155, 024103 (2021)] resolves the order-of-limits problem in the original TM formulation while preserving its valuable essential behaviors. Those include performance on standard thermochemistry and solid data sets that is competitive with that of the most widely explored meta-generalized-gradient-approximation DFAs (SCAN and r2SCAN) while also providing superior performance on elemental solid magnetization. Puzzlingly however, rregTM proved to be intractable for de-orbitalization via the approach of Mejía-Rodríguez and Trickey [Phys. Rev. A 96, 052512 (2017)]. We report investigation that leads to diagnosis of how the regularization in rregTM of the z indicator functions (z = the ratio of the von-Weizsäcker and Kohn-Sham kinetic energy densities) leads to non-physical behavior. We propose a simpler regularization that eliminates those oddities and that can be calibrated to reproduce the good error patterns of rregTM. We denote this version as simplified, regularized Tao-Mo, sregTM. We also show that it is unnecessary to use rregTM correlation with sregTM exchange: Perdew-Burke-Ernzerhof correlation is sufficient. The subsequent paper shows how sregTM enables some progress on de-orbitalization.

5.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326162

RESUMO

We report APW+lo (augmented plane wave plus local orbital) density functional theory (DFT) calculations of large molecular systems using the domain specific SIRIUS multi-functional DFT package. The APW and FLAPW (full potential linearized APW) task and data parallelism options and the advanced eigen-system solver provided by SIRIUS can be exploited for performance gains in ground state Kohn-Sham calculations on large systems. This approach is distinct from our prior use of SIRIUS as a library backend to another APW+lo or FLAPW code. We benchmark the code and demonstrate performance on several magnetic molecule and metal organic framework systems. We show that the SIRIUS package in itself is capable of handling systems as large as a several hundred atoms in the unit cell without having to make technical choices that result in the loss of accuracy with respect to that needed for the study of magnetic systems.


Assuntos
Elétrons , Magnetismo
7.
J Chem Phys ; 157(11): 114109, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137794

RESUMO

The deviations from linearity of the energy as a function of the number of electrons that arise with current approximations to the exchange-correlation (XC) energy functional have important consequences for the frontier eigenvalues of molecules and the corresponding valence-band maxima for solids. In this work, we present an analysis of the exact theory that allows one to infer the effects of such approximations on the highest occupied and lowest unoccupied molecular orbital eigenvalues. Then, we show the importance of the asymptotic behavior of the XC potential in the generalized gradient approximation (GGA) in the case of the NCAPR functional (nearly correct asymptotic potential revised) for determining the shift of the frontier orbital eigenvalues toward the exact values. Thereby we establish a procedure at the GGA level of refinement that allows one to make a single calculation to determine the ionization potential, the electron affinity, and the hardness of molecules (and its solid counterpart, the bandgap) with an accuracy equivalent to that obtained for those properties through energy differences, a procedure that requires three calculations. For solids, the accuracy achieved for the bandgap lies rather close to that which is obtained through hybrid XC energy functionals, but those also demand much greater computational effort than what is required with the simple NCAPR GGA calculation.

8.
J Phys Chem A ; 124(47): 9889-9894, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175542

RESUMO

The recent major modification, r2SCAN, of the SCAN (strongly constrained and appropriately normed) meta-GGA exchange-correlation functional is shown to give substantially better spin-crossover electronic energies (high spin minus low spin) on a benchmark data set than the original SCAN as well as on some Fe complexes. The deorbitalized counterpart r2SCAN-L is almost as good as SCAN and much faster in periodically bounded systems. A combination strategy for the balanced treatment of molecular and periodic spin-crossover therefore is recommended.

9.
J Phys Chem A ; 124(7): 1334-1342, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31978298

RESUMO

Two methods to calculate negative electron affinities systematically from ground-state density functional methods are presented. One makes use of the lowest unoccupied molecular orbital energy shift provided by approximate inclusion of derivative discontinuity in the nearly correct asymptotic potential (NCAP) nonempirical, constraint-based generalized gradient approximation exchange functional. The other uses a second-order perturbation calculation of the derivative discontinuity based on the NCAP exchange-correlation potential. On a set of thirty-eight molecules, NCAP leads to a rather accurate description that is improved further through the perturbation correction. The results presented show the importance of the asymptotic behavior of the exchange-correlation potential in the calculation of negative electron affinities as well as demonstrating the versatility of the NCAP functional.

10.
Phys Rev Lett ; 120(7): 076401, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542959

RESUMO

Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

11.
J Chem Phys ; 147(24): 244108, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29289142

RESUMO

In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few µhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

13.
J Chem Phys ; 145(22): 224106, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984916

RESUMO

The direct random phase approximation (RPA) and RPA with second-order screened exchange (SOSEX) have been implemented with complex orbitals as a basis for treating open-shell atoms. Both RPA and RPA+SOSEX are natural implicit current density functionals because the paramagnetic current density implicitly is included through the use of complex orbitals. We confirm that inclusion of the SOSEX correction improves the total energy accuracy substantially compared to RPA, especially for smaller-Z atoms. Computational complexity makes post self-consistent-field (post-SCF) evaluation of RPA-type expressions commonplace, so orbital basis origins and properties become important. Sizable differences are found in correlation energies, total atomic energies, and ionization energies for RPA-type functionals evaluated in the post-SCF fashion with orbital sets obtained from different schemes. Reference orbitals from Kohn-Sham calculations with semi-local functionals are more suitable for RPA+SOSEX to generate accurate total energies, but reference orbitals from exact exchange (non-local) yield essentially energetically degenerate open-shell atom ground states. RPA+SOSEX correlation combined with exact exchange calculated from a hybrid reference orbital set (half the exchange calculated from exact-exchange orbitals, the other half of the exchange from orbitals optimized for the Perdew-Burke-Ernzerhof (PBE) exchange functional) gives the best overall performance. Numerical results show that the RPA-like functional with SOSEX correction can be used as a practical implicit current density functional when current effects should be included.

14.
J Chem Phys ; 142(5): 054105, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662634

RESUMO

A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement.

15.
Phys Rev Lett ; 112(7): 076403, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579621

RESUMO

An accurate analytical parametrization for the exchange-correlation free energy of the homogeneous electron gas, including interpolation for partial spin polarization, is derived via thermodynamic analysis of recent restricted path integral Monte Carlo (RPIMC) data. This parametrization constitutes the local spin density approximation (LSDA) for the exchange-correlation functional in density functional theory. The new finite-temperature LSDA reproduces the RPIMC data well, satisfies the correct high-density and low- and high-T asymptotic limits, and is well behaved beyond the range of the RPIMC data, suggestive of broad utility.

16.
17.
J Chem Phys ; 136(10): 104108, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423829

RESUMO

Imposition of the constraint that, for the hydrogen atom, the exchange energy cancels the Coulomb repulsion energy yields a non-empirical re-parameterization of the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation energy functional, and of the related PBE hybrid (PBE0). The re-parameterization, which leads to an increase of the gradient contribution to the exchange energy with respect to the original PBE functional, is tested through the calculation of heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies, for some well known test sets designed to validate energy functionals. The results for the re-parameterized PBE GGA, called PBEmol, give substantial improvement over the original PBE in the prediction of the heats of formation, while retaining the quality of the original PBE functional for description of all the other properties considered. The results for the hybrids indicate that, although the PBE0 functional provides a rather good description of these properties, the predictions of the re-parameterized functional, called PBEmolß0, are, except in the case of the ionization potentials, modestly better. Also, the results for PBEmolß0 are comparable to those of B3LYP. In particular, the mean absolute error for the bond distance test set is 17% lower than the corresponding error for B3LYP. The re-parameterization for the pure GGA (PBEmol) differs from that for the hybrid (PBEmolß0), illustrating that improvement at the GGA level of complexity does not necessarily provide the best GGA for use in a hybrid.

18.
J Chem Phys ; 137(3): 034102, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830678

RESUMO

The performance of eight generalized gradient approximation exchange-correlation (xc) functionals is assessed by a series of scalar relativistic all-electron calculations on octahedral palladium model clusters Pd(n) with n = 13, 19, 38, 55, 79, 147 and the analogous clusters Au(n) (for n up through 79). For these model systems, we determined the cohesive energies and average bond lengths of the optimized octahedral structures. We extrapolate these values to the bulk limits and compare with the corresponding experimental values. While the well-established functionals BP, PBE, and PW91 are the most accurate at predicting energies, the more recent forms PBEsol, VMTsol, and VT{84}sol significantly improve the accuracy of geometries. The observed trends are largely similar for both Pd and Au. In the same spirit, we also studied the scalability of the ionization potentials and electron affinities of the Pd clusters, and extrapolated those quantities to estimates of the work function. Overall, the xc functionals can be classified into four distinct groups according to the accuracy of the computed parameters. These results allow a judicious selection of xc approximations for treating transition metal clusters.

19.
J Chem Phys ; 136(14): 144115, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22502509

RESUMO

Though there is fevered effort on orbital-dependent approximate exchange-correlation functionals, generalized gradient approximations, especially the Perdew-Burke-Ernzerhof (PBE) form, remain the overwhelming choice in calculations. A simple generalized gradient approximation (GGA) exchange functional [A. Vela, V. Medel, and S. B. Trickey, J. Chem. Phys. 130, 244103 (2009)] was developed that improves substantially over PBE in energetics (on a typical test set) while being almost as simple in form. The improvement came from constraining the exchange enhancement factor to be below the Lieb-Oxford bound for all but one value of the exchange dimensionless gradient, s, and to go to the uniform electron gas limit at both s = 0 and s → ∞. Here we discuss the issue of asymptotic constraints for GGAs and show that imposition of the large s constraint, lim(s→∞)s(1/2)F(xc)(n,s)<∞, where F(xc)(n, s) is the enhancement factor and n is the electron density, upon the Vela-Medel-Trickey (VMT) exchange functional yields modest further improvement. The resulting exchange functional, denoted VT{8,4}, is only slightly more complicated than VMT and easy to program. Additional improvement is obtained by combining VT{8,4} or VMT exchange with the Lee-Yang-Parr correlation functional. Extensive computational results on several datasets are provided as verification of the overall performance gains of both versions.

20.
J Phys Chem Lett ; 13(51): 12049-12054, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36542415

RESUMO

High-throughput searches for spin-crossover molecules require Hubbard-U corrections to common density functional exchange-correlation (XC) approximations. However, the Ueff values obtained from linear response or based on previous studies overcorrect the spin-crossover energies. We demonstrate that employing a linearly mixed ensemble average spin state as the reference configuration for the linear response calculation of Ueff resolves this issue. Validation on a commonly used set of spin-crossover complexes shows that these ensemble Ueff values consistently are smaller than those calculated directly on a pure spin state, irrespective of whether that be low- or high-spin. Adiabatic crossover energies using this methodology for a generalized gradient approximation XC functional are closer to the expected target energy range than with conventional Ueff values. Based on the observation that the Ueff correction is similar for different complexes that share transition metals with the same oxidation state, we devise a set of recommended averaged Ueff values for high-throughput calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA