Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(18): 7003-7013, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097171

RESUMO

Herein, we present an unprecedented formation of a heterodinuclear complex [{(ppy)2IrIII}(µ-phpy){RuII(tpy)}](ClO4)2 {[1](ClO4)2} using terpyridyl/phenylpyridine as ancillary ligands and asymmetric phpy as a bridging ligand. The asymmetric binding mode (N∧N-∩-N∧N∧C-) of the phpy ligand in {[1](ClO4)2} is confirmed by 1H, 13C, 1H-1H correlated spectroscopy (COSY), high-resolution mass spectrum (HRMS), single-crystal X-ray crystallography techniques, and solution conductivity measurements. Theoretical investigation suggests that the highest occupied molecular orbital (HOMO) and the least unoccupied molecular orbital (LUMO) of [1]2+ are located on iridium/ppy and phpy, respectively. The complex displays a broad low energy charge transfer (CT) band within 450-575 nm. The time-dependent density functional theory (TDDFT) analysis suggests this as a mixture of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT), where both ruthenium, iridium, and ligands are involved. Complex {[1](ClO4)2} exhibits RuIIIrIII/RuIIIIrIII- and RuIIIIrIII/RuIIIIrIV-based oxidative couples at 0.83 and 1.39 V, respectively. The complex shows anticancer activity and selectivity toward human breast cancer cells (IC50; MCF-7: 9.3 ± 1.2 µM, and MDA-MB-231: 8.6 ± 1.2 µM) over normal breast cells (MCF 10A: IC50 ≈ 21 ± 1.3 µM). The Western blot analysis and fluorescence microscopy images suggest that combined apoptosis and autophagy are responsible for cancer cell death.


Assuntos
Compostos Organometálicos , Humanos , Estrutura Molecular , Compostos Organometálicos/química , Ligantes , Irídio/farmacologia , Irídio/química , Análise Espectral
2.
Dalton Trans ; 45(38): 15122-15136, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27711766

RESUMO

Six mononuclear Ir complexes (1-6) using polypyridyl-pyrazine based ligands (L1 and L2) and {[cp*IrCl(µ-Cl)]2 and [(ppy)2Ir(µ-Cl)]2} precursors have been synthesised and characterised. Complexes 1-5 have shown potent anticancer activity against various human cancer cell lines (MCF-7, LNCap, Ishikawa, DU145, PC3 and SKOV3) while complex 6 is found to be inactive. Flow cytometry studies have established that cellular accumulation of the complexes lies in the order 2 > 1 > 5 > 4 > 3 > 6 which is in accordance with their observed cytotoxicity. No changes in the expression of the proteins like PARP, caspase 9 and beclin-1, Atg12 discard apoptosis and autophagy, respectively. Overexpression of CHOP, activation of MAPKs (P38, JNK, and ERK) and massive cytoplasmic vacuolisation collectively suggest a paraptotic mode of cell death induced by proteasomal dysfunction as well as endoplasmic reticulum and mitochondrial stress. An intimate relationship between p53, ROS production and extent of cell death has also been established using p53 wild, null and mutant type cancer cells.


Assuntos
Complexos de Coordenação/farmacologia , Irídio/farmacologia , Pirazinas/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Citoplasma/efeitos dos fármacos , Humanos , Irídio/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pirazinas/química , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Vacúolos/efeitos dos fármacos
3.
Dalton Trans ; 45(31): 12532-8, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27435992

RESUMO

The reaction of the chloro-bridged dimeric precursor [{(p-cym)Ru(II)Cl}(µ-Cl)]2 (p-cym = p-cymene) with the bridging ligand 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine (bpytz) in ethanol results in the formation of the dinuclear complex [{(p-cym)Ru(II)Cl}2(µ-bpytz˙(-))](+), [1](+). The bridging tetrazine ligand is reduced to the anion radical (bpytz˙(-)) which connects the two Ru(II) centres. Compound [1](PF6) has been characterised by an array of spectroscopic and electrochemical techniques. The radical anion character has been confirmed by magnetic moment (corresponding to one electron paramagnetism) measurement, EPR spectroscopic investigation (tetrazine radical anion based EPR spectrum) as well as density functional theory based calculations. Complex [1](+) displays two successive one electron oxidation processes at 0.66 and 1.56 V versus Ag/AgCl which can be attributed to [{(p-cym)Ru(II)C}2(µ-bpytz˙(-))](+)/[{(p-cym)Ru(II)Cl}2(µ-bpytz)](2+) and [{(p-cym)Ru(II)Cl}2(µ-bpytz)](+)/[{(p-cym)Ru(III)Cl}2(µ-bpytz)](2+) processes (couples I and II), respectively. The reduction processes (couple III-couple V), which are irreversible, likely involve the successive reduction of the bridging ligand and the metal centres together with loss of the coordinated chloride ligands. UV-Vis-NIR spectroelectrochemical investigation reveals typical tetrazine radical anion containing bands for [1](+) and a strong absorption in the visible region for the oxidized form [1](2+), which can be assigned to a Ru(II) → π* (tetrazine) MLCT transition. The assignment of spectroscopic bands was confirmed by theoretical calculations.

4.
Dalton Trans ; 44(11): 5114-24, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25675378

RESUMO

Mononuclear half-sandwiched complexes [(p-cym)RuCl(bpmo)](ClO4) {[1](ClO4)} and [(p-cym)RuCl(bpms)](PF6) {[2](PF6)} have been prepared by reacting heteroscorpionate ligands bpmo = 2-methoxyphenyl-bis(3,5-dimethylpyrazol-1-yl)methane and bpms = 2-methylthiophenyl-bis(3,5-dimethylpyrazol-1-yl)methane, respectively, with a dimeric precursor complex [(p-cym)RuCl(µ-Cl)]2 (p-cym = 1-isopropyl-4-methylbenzene) in methanol. The corresponding aqua derivatives [(p-cym)Ru(H2O)(bpmo)](ClO4)2 {[3](ClO4)2} and [(p-cym)Ru(H2O)(bpms)](PF6)2 {[4](PF6)2} are obtained from {[1](ClO4)} and {[2](PF6)}, respectively, via Cl(-)/H2O exchange process in the presence of appropriate equivalents of AgClO4/AgNO3 + KPF6 in a methanol-water mixture. The molecular structures of the complexes {[1]Cl, [3](ClO4)2 and [4](PF6)(NO3)} are authenticated by their single crystal X-ray structures. The complexes show the expected piano-stool geometry with p-cym in the η(6) binding mode. The aqua complexes [3](ClO4)2 and [4](PF6)2 show significantly good antibacterial activity towards E. coli (gram negative) and B. subtilis (gram positive) strains, while chloro derivatives ({[1](ClO4)} and {[2](PF6)} are found to be virtually inactive. The order of antibacterial activity of the complexes according to their MIC values is [1](ClO4) (both 1000 µg mL(-1)) < [2](PF6) (580 µg mL(-1) and 750 µg mL(-1)) < [3](ClO4)2 (both 100 µg mL(-1)) < [4](PF6)2 (30 µg mL(-1) and 60 µg mL(-1)) for E. coli and B. subtilis strains, respectively. Further, the aqua complexes [3](ClO4)2 and [4](PF6)2 show clear zones of inhibition against kanamycin, ampicillin and chloramphenicol resistant E. coli strains. The detailed mechanistic aspects of the aforesaid active aqua complexes [3](ClO4)2 and [4](PF6)2 have been explored, and it reveals that both the complexes inhibit the number of nucleoids per cell in vivo and bind to DNA in vitro. The results indeed demonstrate that both [3](ClO4)2 and [4](PF6)2 facilitate the inhibition of bacterial growth by binding to DNA.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Pirazóis/química , Rutênio/química , Antibacterianos/química , Antibacterianos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Técnicas de Química Sintética , DNA/metabolismo , Eletroquímica , Escherichia coli/efeitos dos fármacos , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
5.
Dalton Trans ; 43(44): 16597-600, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25297718

RESUMO

Design and synthesis of the bis(pyrazol-1-yl)methane based bis-heteroscorpionate Pd-Ru complex results in efficient tandem Suzuki coupling/transfer hydrogenation reaction with a broad range of substrate reactivity.

7.
Dalton Trans ; 42(39): 14081-91, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23938874

RESUMO

Mononuclear [(p-cym)RuCl(pz4lut)]Cl (1) and dinuclear [{(p-cym)RuCl}2(µ-pz4lut)]Cl2 (2) complexes (p-cym = 1-isopropyl-4-methylbenzene) comprising of bis(pyrazol-1-yl)methane based heteroscorpionate ligand α,α,α',α'-tetra(pyrazol-1-yl)-2,6-lutidine (pz4lut) have been synthesised from pz4lut ligand and dimeric precursor complex [(p-cym)RuCl(µ-Cl)]2 in methanol. The aqua derivatives [(p-cym)Ru(H2O)(pz4lut)](ClO4)2 (3) and [{(p-cym)Ru(H2O)}2(µ-pz4lut)](ClO4)4 (4) are obtained from 1 and 2, respectively, via Cl/H2O exchange process in presence of appropriate equivalents of AgClO4 in methanol­water mixture. The molecular structures of dinuclear complexes, 2 and 4 are authenticated by their single crystal X-ray structures. Cyclic voltammetry reveals negligible electronic communication between the metal centres in the ligand bridged complex 2. All four complexes have been tested for their anticancer activities in human breast (MCF7), lung (A549) and colon (HCT116) cancer cell lines. The complexes show dose dependent suppression of cell viability with moderately good IC50 values ranging from 3.5­92 µM. Experimental results have revealed that the aqua derivatives, 3 and 4 exhibit better cytotoxic effect against all those cell lines as compared to the precursor chlorido complexes, 1 and 2. Results also demonstrate that the complexes are more potent against HCT116 cells as compared to other cell lines.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Pirazóis/química , Piridinas/química , Rutênio/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Cristalografia por Raios X , Transporte de Elétrons , Células HCT116 , Humanos , Ligação de Hidrogênio , Células MCF-7 , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA