Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(10): e2220131120, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848575

RESUMO

Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.

2.
J Am Chem Soc ; 146(10): 6721-6732, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38413362

RESUMO

Many organic reactions are characterized by a complex mechanism with a variety of transition states and intermediates of different chemical natures. Their correct and accurate theoretical characterization critically depends on the accuracy of the computational method used. In this work, we study a complex ambimodal cycloaddition with five transition states, two intermediates, and three products, and we ask whether density functional theory (DFT) can provide a correct description of this type of complex and multifaceted reaction. Our work fills a gap in that most systematic benchmarks of DFT for chemical reactions have considered much simpler reactions. Our results show that many density functionals not only lead to seriously large errors but also differ from one another in predicting whether the reaction is ambimodal. Only a few of the available functionals provide a balanced description of the complex and multifaceted reactions. The parameters varied in the tested functionals are the ingredients, the treatment of medium-range and nonlocal correlation energy, and the inclusion of Hartree-Fock exchange. These results show a clear need for more benchmarks on the mechanisms of large molecules in complex reactions.

3.
J Am Chem Soc ; 146(19): 13571-13579, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710105

RESUMO

Based on quantum mechanically guided experiments that observed elusive intermediates in the domain of inception that lies between large molecules and soot particles, we provide a new mechanism for the formation of carbonaceous particles from gas-phase molecular precursors. We investigated the clustering behavior of resonantly stabilized radicals (RSRs) and their interactions with unsaturated hydrocarbons through a combination of gas-phase reaction experiments and theoretical calculations. Our research directly observed a sequence of covalently bound clusters (CBCs) as key intermediates in the evolution from small RSRs, such as benzyl (C7H7), indenyl (C9H7), 1-methylnaphthyl (1-C11H9), and 2-methylnaphthyl (2-C11H9), to large polycyclic aromatic hydrocarbons (PAHs) consisting of 28 to 55 carbons. We found that hydrogen abstraction and RSR addition drive the formation and growth of CBCs, leading to progressive H-losses, the generation of large PAHs and PAH radicals, and the formation of white smoke (incipient carbonaceous particles). This mechanism of progressive H-losses from CBCs (PHLCBC) elucidates the crucial relationship among RSRs, CBCs, and PAHs, and this study provides an unprecedentedly seamless path of observed assembly from small RSRs to large nanoparticles. Understanding the PHLCBC mechanism over a wide temperature range may enhance the accuracy of multiscale models of soot formation, guide the synthesis of carbonaceous nanomaterials, and deepen our understanding of the origin and evolution of carbon within our galaxy.

4.
Phys Chem Chem Phys ; 26(22): 16160-16174, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38787752

RESUMO

Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.

5.
J Phys Chem A ; 128(18): 3625-3634, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38669454

RESUMO

We present an improvement of the local-pair zero-point-energy (LP-ZPE) scheme of Mukherjee and Barbatti. The new approximation is called the improved LP-ZPE scheme or iLP-ZPE. This scheme can produce trajectories that do not have unphysical leaking of zero-point energy from high-frequency spectator modes into low-frequency modes. We illustrate the method with a successful direct dynamics application to the Ne···HF van der Waals molecule. The method is well suited for direct dynamics calculations because it does not require costly evaluations of local Hessians or instantaneous normal modes along the trajectories.

6.
J Phys Chem A ; 128(7): 1207-1217, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349764

RESUMO

We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').

7.
J Phys Chem A ; 128(9): 1698-1706, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38407944

RESUMO

Compressed multistate pair-density functional theory (CMS-PDFT) is a multistate version of multiconfiguration pair-density functional theory that can capture the correct topology of coupled potential energy surfaces (PESs) around conical intersections. In this work, we develop interstate coupling vectors (ISCs) for CMS-PDFT in the OpenMolcas and PySCF/mrh electronic structure packages. Yet, the main focus of this work is using ISCs to calculate minimum-energy conical intersections (MECIs) by CMS-PDFT. This is performed using the projected constrained optimization method in OpenMolcas, which uses ISCs to restrain the iterations to the conical intersection seam. We optimize the S1/S0 MECIs for ethylene, butadiene, and benzene and show that CMS-PDFT gives smooth PESs in the vicinities of the MECIs. Furthermore, the CMS-PDFT MECIs are in good agreement with the MECI calculated by the more expensive XMS-CASPT2 method.

8.
J Am Chem Soc ; 145(36): 19866-19876, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651227

RESUMO

Although experimental methods can be used to obtain the quantitative kinetics of atmospheric reactions, experimental data are often limited to a narrow temperature range. The reaction of SO3 with water vapor is important for elucidating the formation of sulfuric acid in the atmosphere; however, the kinetics is uncertain at low temperatures. Here, we calculate rate constants for reactions of sulfur trioxide with two water molecules. We consider two mechanisms: the SO3···H2O + H2O reaction and the SO3 + (H2O)2 reaction. We find that beyond-CCSD(T) contributions to the barrier heights are very large, and multidimensional tunneling, unusually large anharmonicity of high-frequency modes, and torsional anharmonicity are important for obtaining quantitative kinetics. We find that at lower temperatures, the formation of the termolecular precursor complexes, which is often neglected, is rate-limiting compared to passage through the tight transition states. Our calculations show that the SO3···H2O + H2O mechanism is more important than the SO3 + (H2O)2 mechanism at 5-50 km altitudes. We find that the rate ratio between SO3···H2O + H2O and SO3 + (H2O)2 is greater than 20 at altitudes between 10 and 35 km, where the concentration of SO3 is very high.

9.
J Am Chem Soc ; 145(40): 22019-22030, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782301

RESUMO

Activating the C-H bonds of alkanes without further oxidation to more thermodynamically stable products, CO and CO2, is a long-sought goal of catalytic chemistry. Inspired by the monocopper active site of methane monooxygenase, we synthesized a Cu-doped ZIF-8 metal-organic framework with 25% Cu and 75% Zn in the nodes and activated it by heating to 200 °C and dosing in a stepwise fashion with O2, methane, and steam. We found that it does oxidize methane to methanol and formaldehyde. The catalysis persists through at least five cycles, and beyond the third cycle, the selectivity improves to the extent that no CO2 can be detected. Experimental characterization and analysis were carried out by PXRD, DRUV-vis, SEM, and XAS (XANES and EXAFS). The reaction is postulated to proceed at open-coordination copper sites generated by defects, and the mechanism of methanol production was explicated by density functional calculations with the revMO6-L exchange-correlation functional. The calculations reveal a catalytic cycle of oxygen-activated CuI involving the conversion of two molecules of CH4 to two molecules of CH3OH by a sequence of hydrogen atom transfer reactions and rebound steps. For most steps in the cycle, the reaction is more favored by singlet species than by triplets.

10.
J Phys Chem A ; 127(6): 1469-1474, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36749710

RESUMO

ortho-Fluorothiophenol (o-FTP) photodissociates through the well-known πσ* process. The fluorine atom of o-FTP introduces a feature in the photodissociation of o-FTP that does not occur in most other πσ* processes because the fluorine atom can form a hydrogen bond with the hydrogen atom of the SH group. Theoretical computations can serve as a good way to study these reactions because they usually proceed very quickly, and the current spectroscopies cannot probe the details of the processes as thoroughly as theory can. Here we use completely renormalized equation-of-motion coupled cluster theory with single and double excitations and a quasiperturbative treatment of connected triple excitations (CR-EOM-CCSD(T)) and quasidegenerate perturbation theory, in particular extended multistate complete-active-space second-order perturbation theory (XMS- CASPT2), to calculate the four lowest singlet states of o-FTP and hybrid density functional theory to optimize the geometries of the two lowest singlet states. We find that ten active electrons in nine active orbitals are sufficient to provide a good reference function for all four states. We find that the ground electronic state and the first excited singlet state both exhibit strongly bent hydrogen bonds. We also use density functional theory with the Tamm-Dancoff approximation and the SMD solvation model to successfully simulate the electronic spectrum of o-FTP in n-hexane solvent.

11.
J Phys Chem A ; 127(10): 2295-2305, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36880996

RESUMO

Neodymium dioxide (NdO2) and samarium dioxide cation (SmO22+) are isoelectronic molecules. Here we used calculations of the spin-orbit-free wave functions to study and compare their geometries, spin states, and bonding. We used Kohn-Sham density functional theory with the B97-1 exchange-correlation functional to optimize the geometries and found that the two molecules have different ground spin states and structures. NdO2 favors a linear ONdO triplet structure, and SmO22+ favors a linear SmOO2+ quintet structure. We then used state-averaged complete-active-space self-consistent-field (SA-CASSCF) calculations to investigate the bonding characteristics of NdO2 and SmO22+ in various geometries. We found that in NdOO, one electron is transferred from Nd to O, while in SmO22+, there is no electron transfer between Sm and O. The SA-CASSCF calculation also shows that ONdO has a stronger bonding orbital between a 4f orbital of Nd and a pz orbital of oxygen atoms. We compared three multireference methods, namely, extended multistate complete active space second-order perturbation theory (XMS-CASPT2), extended multistate pair-density functional theory (XMS-PDFT), and compressed multistate pair-density functional theory (CMS-PDFT), for calculating the spin-orbit-free energies of various isomers of both molecules. We found that although XMS-PDFT and CMS-PDFT are at the same cost level as SA-CASSCF, they give results with the same accuracy as given for the much more demanding XMS-CASPT2 calculation. Between the two multistate PDFT methods, CMS-PDFT is better at giving good degeneracies for states that should be degenerate.

12.
J Phys Chem A ; 127(18): 4194-4205, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130157

RESUMO

We develop response-function algorithms for dipole moments and transition dipole moments for compressed multistate pair-density functional theory (CMS-PDFT). We use the method of undetermined Lagrange multipliers to derive analytical expressions and validate them using numerical differentiation. We test the accuracy of the magnitudes of predicted ground-state and excited-state dipole moments, the orientations of these dipole moments, and the orientation of transition dipole moments by comparison to experimental data. We show that CMS-PDFT has good accuracy for these quantities, and we also show that, unlike methods that neglect state interaction, CMS-PDFT yields correct behavior for the dipole moment curves in the vicinity of conical intersections. This work, therefore, opens the door to molecular dynamic simulations in strong electric fields, and we envision that CMS-PDFT can now be used to discover chemical reactions that can be controlled by an oriented external electric field upon photoexcitation of the reactants.

13.
J Phys Chem A ; 127(24): 5287-5297, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307218

RESUMO

Machine-learned representations of potential energy surfaces generated in the output layer of a feedforward neural network are becoming increasingly popular. One difficulty with neural network output is that it is often unreliable in regions where training data is missing or sparse. Human-designed potentials often build in proper extrapolation behavior by choice of functional form. Because machine learning is very efficient, it is desirable to learn how to add human intelligence to machine-learned potentials in a convenient way. One example is the well-understood feature of interaction potentials that they vanish when subsystems are too far separated to interact. In this article, we present a way to add a new kind of activation function to a neural network to enforce low-dimensional constraints. In particular, the activation function depends parametrically on all of the input variables. We illustrate the use of this step by showing how it can force an interaction potential to go to zero at large subsystem separations without either inputting a specific functional form for the potential or adding data to the training set in the asymptotic region of geometries where the subsystems are separated. In the process of illustrating this, we present an improved set of potential energy surfaces for the 14 lowest 3A' states of O3. The method is more general than this example, and it may be used to add other low-dimensional knowledge or lower-level knowledge to machine-learned potentials. In addition to the O3 example, we present a greater-generality method called parametrically managed diabatization by deep neural network (PM-DDNN) that is an improvement on our previously presented permutationally restrained diabatization by deep neural network (PR-DDNN).

14.
J Phys Chem A ; 127(45): 9635-9640, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916790

RESUMO

Constructing analytic representations of global and semiglobal potential energy surfaces is difficult and can be laborious, and it is even harder when one needs coupled potential energy surfaces and their electronically nonadiabatic couplings. When accomplished, however, the resulting potential functions are a valuable resource. To facilitate the convenient use of potentials that have been developed, we provide a collection of existing surfaces in a library with consistent units and formats. A potential energy surface library of this type, namely PotLib, was built more than 20 years ago. However, that library only provided pristine Fortran subroutines for each potential energy surface, and therefore, it is not as user-friendly as would be desirable. Here, we report the creation of ChemPotPy, a CHEMical library of POTential energy surfaces in PYthon. ChemPotPy is a user-friendly library for analytic representation of single-state and multistate potential energy surfaces and couplings. A given entry in the library contains an analytic potential energy function or analytic functions for a set of coupled potential energy surfaces, and depending on the case, it may also include analytic or numerical gradients, nonadiabatic coupling vectors, and/or diabatic potential energy matrices and their gradients. Only three inputs, namely, the chemical formula of the system, the name of the potential energy surface or surface set, and the Cartesian geometry, are required. ChemPotPy uses the same units for input and output quantities of all surfaces and surface sets to facilitate general interfaces with the dynamics programs. The initial version of the library contains 338 entries, and we anticipate that more will be added in the future.

15.
J Phys Chem A ; 127(46): 9695-9704, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37939355

RESUMO

The predictive ability of density functional theory is fundamental to its usefulness in chemical applications. Recent work has compared solution-phase enthalpies of activation for metal-ligand bond dissociation to enthalpies of reaction for bond dissociation, and the present work continues those comparisons for 43 density functional methods. The results for ligand dissociation enthalpies of 30 metal-ligand complexes tested in this work reveal significant inadequacies of some functionals as well as challenges from the dispersion corrections to some functionals. The analysis presented here demonstrates the excellent performance of a recent density functional, M11plus, which contains nonlocal rung-3.5 correlation. We also find a good agreement between theory and experiment for some functionals without empirical dispersion corrections such as M06, r2SCAN, M06-L, and revM11, as well as good performance for some functionals with added dispersion corrections such as ωB97X-D (which always has a correction) and BLYP, B3LYP, CAM-B3LYP, and PBE0 when the optional dispersion corrections are added.

16.
Proc Natl Acad Sci U S A ; 117(11): 5610-5616, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123079

RESUMO

Barrierless unimolecular association reactions are prominent in atmospheric and combustion mechanisms but are challenging for both experiment and kinetics theory. A key datum for understanding the pressure dependence of association and dissociation reactions is the high-pressure limit, but this is often available experimentally only by extrapolation. Here we calculate the high-pressure limit for the addition of a chlorine atom to acetylene molecule (Cl + C2H2→C2H2Cl). This reaction has outer and inner transition states in series; the outer transition state is barrierless, and it is necessary to use different theoretical frameworks to treat the two kinds of transition state. Here we study the reaction in the high-pressure limit using multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) at the outer transition state and reaction-path variational transition state theory (RP-VTST) at the inner turning point; then we combine the results with the canonical unified statistical (CUS) theory. The calculations are based on a density functional validated against the W3X-L method, which is based on coupled cluster theory with single, double, and triple excitations and a quasiperturbative treatment of connected quadruple excitations [CCSDT(Q)], and the computed rate constants are in good agreement with some of the experimental results. The chlorovinyl (C2H2Cl) adduct has two isomers that are equilibrium structures of a double-well C≡C-H bending potential. Two procedures are used to calculate the vibrational partition function of chlorovinyl; one treats the two isomers separately and the other solves the anharmonic energy levels of the double well. We use these results to calculate the standard-state free energy and equilibrium constant of the reaction.

17.
Proc Natl Acad Sci U S A ; 117(5): 2294-2301, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953258

RESUMO

Screened-exchange hybrid density functionals are especially recommended for solid-state systems because they combine the advantages of hybrid functionals with the correct physics and lower computational cost associated with the attenuation of Hartree-Fock exchange at long range. We present a screened-exchange hybrid functional, M06-SX, that combines the functional form of the local revM06-L functional with a percentage of short-range nonlocal Hartree-Fock exchange. The M06-SX functional gives good results not only for a large set of training data but also for several databases quite different from the training data. The mean unsigned error (MUE) of the M06-SX functional is 2.85 kcal/mol for 418 atomic and molecular energies (AME418) in Minnesota Database 2019, which is better than all five other screened-exchange hybrid functionals tested in this work. The M06-SX functional also gives especially good results for semiconductor band gaps, molecular dissociation energies, noncovalent interactions, barrier heights, and electronic excitation energies excluding long-range charge transfer excitations. For the LC18 lattice constants database, the M06-SX functional gives an MUE of only 0.034 Å. Therefore, the M06-SX functional is well suited for studying molecular chemistry as well as solid-state physics.

18.
J Am Chem Soc ; 144(28): 12850-12860, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786922

RESUMO

Reference states are useful as models for facilitating calculations of equilibrium constants, and they may also serve as standard states that are convenient for organizing and tabulating thermodynamic data; however, standard state conventions and appropriate reference states for adsorbed species have received less attention than those for pure substances and solutes. Here, we compare seven choices of reference states for calculations of equilibrium constants and transition state theory rate constants for flat surfaces, in particular (1) an ideal 2D harmonic oscillator, (2) an ideal rigid-molecule harmonic oscillator, (3) an ideal 2D harmonic oscillator with separable surface modes, (4) a 2D ideal gas, (5) an ideal 2D hindered translator, (6) an ideal 2D hindered translator with lowest-order barriers, and (7) a simple ideal 2D hindered translator proposed in this work. The advantage of models 5-7 is that they can treat both mobile and localized adsorbates in a consistent way, whereas models 1-3 are only appropriate for localized adsorbates, and model 4 is only appropriate for a freely translating adsorbate. Furthermore, models 6 and 7 reduce the computational cost without the user having to calculate barrier heights for diffusion. An advantage of the simple ideal 2D hindered translator is that it has a physical high-temperature limit. We also propose a reference state for nonflat surfaces. The user is encouraged to choose a reference state based on the appropriateness of the model and the practicality of the calculations.


Assuntos
Gases , Difusão , Entropia , Soluções , Termodinâmica
19.
J Am Chem Soc ; 144(43): 19910-19920, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264240

RESUMO

Kinetics provides the fundamental parameters for elucidating sources and sinks of key atmospheric species and for atmospheric modeling more generally. Obtaining quantitative kinetics in the laboratory for the full range of atmospheric temperatures and pressures is quite difficult. Here, we use computational chemistry to obtain quantitative rate constants for the reactions of HO2 with HCHO, CH3CHO, and CF3CHO. First, we calculate the high-pressure-limit rate constants by using a dual-level strategy that combines conventional transition state theory using a high level of electronic structure wave function theory with canonical variational transition state theory including small-curvature tunneling using density functional theory. The wave-function level is beyond-CCSD(T) for HCHO and CCSD(T)-F12a (Level-A) for XCHO (X = CH3, CF3), and the density functional (Level-B) is specifically validated for these reactions. Then, we calculate the pressure-dependent rate constants by using system-specific quantum RRK theory (SS-QRRK) and also by an energy-grained master equation. The two treatments of the pressure dependence agree well. We find that the Level-A//Level-B method gives good agreement with CCSDTQ(P)/CBS. We also find that anharmonicity is an important factor that increases the rate constants of all three reactions. We find that the HO2 + HCHO reaction has a significant dependence on pressure, but the HO2 + CF3CHO reaction is almost independent of pressure. Our findings show that the HO2 + HCHO reaction makes important contribution to the sink for HCHO, and the HO2 + CF3CHO reaction is the dominant sink for CF3CHO in the atmosphere.

20.
J Am Chem Soc ; 144(11): 4828-4838, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262353

RESUMO

Criegee intermediates are important atmospheric oxidants, and quantitative kinetics for stabilized Criegee intermediates are key parameters for atmospheric modeling but are still limited. Here we report barriers and rate constants for unimolecular reactions of s-cis-syn-acrolein oxide (scsAO), in which the vinyl group makes it a prototype for Criegee intermediates produced in the ozonolysis of isoprene. We find that the MN15-L and M06-2X density functionals have CCSD(T)/CBS accuracy for the unimolecular cyclization and stereoisomerization of scsAO. We calculated high-pressure-limit rate constants by the dual-level strategy that combines (a) high-level wave function-based conventional transition-state theory (which includes coupled-cluster calculations with quasiperturbative inclusion of quadruple excitations because of the strongly multiconfigurational character of the electronic wave function) and (b) canonical variational transition-state theory with small-curvature tunneling based on a validated density functional. We calculated pressure-dependent rate constants both by system-specific quantum Rice-Ramsperger-Kassel theory and by solving the master equation. We report rate constants for unimolecular reactions of scsAO over the full range of atmospheric temperature and pressure. We found that the unimolecular reaction rates of this larger-than-previously studied Criegee intermediate depend significantly on pressure. Particularly, we found that falloff effects decrease the effective unimolecular cyclization rate constant of scsAO by about a factor of 3, but the unimolecular reaction is still the dominant atmospheric sink for scsAO at low altitudes. The large falloff caused by the inclusion of the stereoisomerization channel in the master equation calculations has broad implications for mechanistic analysis of reactions with competitive internal rotations that can produce stable rotamers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA