Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 55(8): 2502-2520, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28592550

RESUMO

Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits.


Assuntos
Infecções Bacterianas/diagnóstico , Técnicas Bacteriológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Epidemiologia Molecular/métodos , Sequenciamento Completo do Genoma/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
mBio ; 7(5)2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27601569

RESUMO

UNLABELLED: The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo IMPORTANCE: The type I signal peptidase of Staphylococcus aureus (SpsB) enables the secretion of numerous proteins by cleavage of the signal peptide. We synthesized an SpsB inhibitor with potent activity against various clinical S. aureus strains. The predominant S. aureus strain USA300 develops resistance to this inhibitor by mutations in a novel transcriptional repressor (cro/cI), causing overexpression of a putative ABC transporter. This mechanism promotes the cleavage and secretion of various proteins independently of SpsB and compensates for the requirement of SpsB for viability in vitro However, bacteria overexpressing the ABC transporter and lacking SpsB secrete reduced levels of virulence-associated proteins and are unable to infect mice. This study describes a bacterial resistance mechanism that provides novel insights into the biology of bacterial secretion.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Expressão Gênica , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Seleção Genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Virulência
3.
Genome Announc ; 3(5)2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26358603

RESUMO

We report the first draft genome sequence of Kerstersia gyiorum from a leg ulcer of a patient with diabetes and osteomyelitis. The 3.94-Mb genome assembly included 3,428 annotated coding sequences with an N50 of 223,310 bp and a plasmid encoding a type IV secretion system gene and two antitoxin genes.

4.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383669

RESUMO

We report the draft genome sequence of Turicella otitidis strain TD1, isolated from a central line catheter sample from a patient with a history of bowel obstruction. It contained several genetic determinants of multidrug-resistant phenotypes such as a cfrA 50S methyltransferase, two major facilitator superfamily-type drug resistance transporters, and a putative beta-lactamase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA