Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Analyst ; 149(8): 2306-2316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38525647

RESUMO

A new method utilizing fluorescent ratiometry is proposed for detecting putrescine and spermidine. The method involves the use of a fluorescent probe comprising a 2D halide perovskite synthesized from octadecylamine-iodine and PbI2via a grinding-sonicating technique, along with a Eu3+-complex. Upon excitation at 290 nm, the probe fluoresces at two distinguishable wavelengths. The addition of putrescine and spermidine significantly decreases the emission of the 2D halide perovskite at 496 nm, while the emission of the Eu3+-complex at 618 nm remains stable. The color changes of the probe depend on the concentration of putrescine and spermidine, and the assay offers linearity over a wide concentration range (30-4000 ng mL-1), a low detection limit (4 ng mL-1 for putrescine, and 7 ng mL-1 for spermidine), and a quick response time. Furthermore, a portable device based on a smartphone can be used to record the color change of the paper test strip using the prepared fluorescent materials. The fluorescence quenching mechanism of the probe is explained as dynamic quenching.

2.
J Environ Sci (China) ; 139: 569-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105077

RESUMO

Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO3 nanorods, WO3/WS2 nanobricks, WO3/WS2 nanorods) are made using a simple hydrothermal method by changing the solvents (H2O, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity. The results show all materials have good photocatalytic activity in aqueous media, with WO3/WS2 nanorods (NRs) having the best activity in the photodegradation of bisphenol A (BPA) under visible-light irradiation. This may originate from increased migration of charge carriers and effective prevention of electron‒hole recombination in WO3/WS2 NRs, whereby this photocatalyst is able to generate more reactive •OH and •O2- species, leading to greater photocatalytic activity. About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO3/WS2 NRs and 5.0 mg/L BPA at pH 7.0. Additionally, the optimal conditions (pH, catalyst dosage, initial BPA concentration) for WO3/WS2 NRs are also elaborately investigated. These rod-like heterostructures are expressed as potential catalysts with excellent photostability, efficient reusability, and highly active effectivity in different types of water. In particular, the removal efficiency of BPA by WO3/WS2 NRs reduces by only 1.5% after five recycling runs and even reaches 89.1% in contaminated lake water. This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources, which is advantageous to various applications in environmental remediation.


Assuntos
Luz , Tungstênio , Tungstênio/química , Compostos Benzidrílicos/química , Água , Catálise
3.
J Environ Sci (China) ; 144: 212-224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802232

RESUMO

In this work, the perovskite LaZnO3 was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole (SMZ) antibiotics under visible light activation. SMZ was almost completely degraded (99.2% ± 0.3%) within 4 hr by photocatalyst LaZnO3 at the optimal dosage of 1.1 g/L, with a mineralization proportion of 58.7% ± 0.4%. The efficient performance of LaZnO3 can be attributed to its wide-range light absorption and the appropriate energy band edge levels, which facilitate the formation of active agents such as ·O2-, h+, and ·OH. The integration of RP-HPLC/Q-TOF-MS and DFT-based computational techniques revealed three degradation pathways of SMZ, which were initiated by the deamination reaction at the aniline ring, the breakdown of the sulfonamide moieties, and a process known as Smile-type rearrangement and SO2 intrusion. Corresponding toxicity of SMZ and the intermediates were analyzed by quantitative structure activity relationship (QSAR), indicating the effectiveness of LaZnO3-based photocatalysis in preventing secondary pollution of the intermediates to the ecosystem during the degradation process. The visible-light-activated photocatalyst LaZnO3 exhibited efficient performance in the occurrence of inorganic anions and maintained high durability across multiple recycling tests, making it a promising candidate for practical antibiotic treatment.


Assuntos
Antibacterianos , Luz , Óxidos , Sulfametizol , Titânio , Poluentes Químicos da Água , Antibacterianos/química , Titânio/química , Óxidos/química , Sulfametizol/química , Poluentes Químicos da Água/química , Compostos de Cálcio/química , Catálise , Fotólise , Modelos Químicos
4.
Chemosphere ; 353: 141647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460843

RESUMO

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Assuntos
Lacase , Óxidos , Óxidos/química , Óxido de Magnésio , Substâncias Húmicas/análise , Hidróxidos/química
5.
RSC Adv ; 14(1): 118-130, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173577

RESUMO

Exploring larger surface area electrode materials is crucial for the development of an efficient supercapacitors (SCs) with superior electrochemical performance. Herein, a cost-effective strategy was adopted to synthesize a series of ZIF8 nanocrystals, and their size effect as a function of surface area was also examined. The resultant ZIF8-4 nanocrystal exhibits a uniform hexagonal structure with a large surface area (2800 m2 g-1) and nanometre size while maintaining a yield as high as 78%. The SCs performance was explored by employing different aqueous electrolytes (0.5 M H2SO4 and 1 M KOH) in a three-electrode set-up. The SC performance using a basic electrolyte (1 M KOH) was superior owing to the high ionic mobility of K+. The optimized ZIF8-4 nanocrystal electrode showed a faradaic reaction with a highest capacitance of 1420 F g-1 at 1 A g-1 of current density compared to other as-prepared electrodes in the three-electrode assembly. In addition, the resultant ZIF8-4 was embedded into a symmetric supercapacitor (SSC), and the device offered 350 F g-1 of capacitance with a maximum energy and power density of 43.7 W h kg-1 and 900 W kg-1 at 1 A g-1 of current density, respectively. To determine the practical viewpoint and real-world applications of the ZIF8-4 SSC device, 7000 GCD cycles were performed at 10 A g-1 of current density. Significantly, the device exhibited a cycling stability around 90% compared to the initial capacitance. Therefore, these findings provide a pathway for constructing large surface area ZIF8-based electrodes for high-value-added energy storage applications, particularly supercapacitors.

6.
Beilstein J Nanotechnol ; 15: 897-908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076691

RESUMO

A facile approach was employed to fabricate MIL-100(Fe) materials from Fe2O3 nanoparticles through a conventional hydrothermal reaction without the presence of HF and HNO3. Effects of trimesic acid content in the reaction system on the quality and CO2/N2 separation performance of the as-prepared MIL-100(Fe) samples were investigated. Using 1.80 g of trimesic acid in the reaction system yielded the sample M-100Fe@Fe2O3#1.80, which proved to be the optimal sample. This choice struck a balance between the amount of required trimesic acid and the quality of the resulting material, resulting in a high yield of 81% and an impressive BET surface area of 1365.4 m2·g-1. At 25 °C and 1 bar, M-100Fe@Fe2O3#1.80 showed a CO2 adsorption capacity of 1.10 mmol·g-1 and an IAST-predicted CO2/N2 selectivity of 18, outperforming conventional adsorbents in CO2/N2 separation. Importantly, this route opens a new approach to utilizing Fe2O3-based waste materials from the iron and steel industry in manufacturing Fe-based MIL-100 materials.

7.
Chemosphere ; 356: 141972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608780

RESUMO

Metal-organic frameworks (MOFs) have emerged as a key focus in water treatment and monitoring due to their unique structural features, including extensive surface area, customizable porosity, reversible adsorption, and high catalytic efficiency. While numerous reviews have discussed MOFs in environmental remediation, this review specifically addresses recent advancements in modifying MOFs to enhance their effectiveness in water purification and monitoring. It underscores their roles as adsorbents, photocatalysts, and in luminescent and electrochemical sensing. Advancements such as pore modification, defect engineering, and functionalization, combined synergistically with advanced materials, have led to the development of recyclable MOF-based nano-adsorbents, Z-scheme photocatalytic systems, nanocomposites, and hybrid materials. These innovations have broadened the spectrum of removable contaminants and improved material recyclability. Additionally, this review delves into the creation of multifunctional MOF materials, the development of robust MOF variants, and the simplification of synthesis methods, marking significant progress in MOF sensor technology. Furthermore, the review addresses current challenges in this field and proposes potential future research directions and practical applications. The growing research interest in MOFs underscores the need for an updated synthesis of knowledge in this area, focusing on both current challenges and future opportunities in water remediation.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Estruturas Metalorgânicas/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Catálise , Nanocompostos/química
8.
Mar Pollut Bull ; 202: 116307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564820

RESUMO

This study utilizes ultraviolet and fluorescence spectroscopic indices of dissolved organic matter (DOM) from sediments, combined with machine learning (ML) models, to develop an optimized predictive model for estimating sediment total organic carbon (TOC) and identifying adjacent land-use types in coastal sediments from the Yellow and Bohai Seas. Our results indicate that ML models surpass traditional regression techniques in estimating TOC and classifying land-use types. Penalized Least Squares Regression (PLR) and Cubist models show exceptional TOC estimation capabilities, with PLR exhibiting the lowest training error and Cubist achieving a correlation coefficient 0.79. In land-use classification, Support Vector Machines achieved 85.6 % accuracy in training and 92.2 % in testing. Maximum fluorescence intensity and ultraviolet absorbance at 254 nm were crucial factors influencing TOC variations in coastal sediments. This study underscores the efficacy of ML models utilizing DOM optical indices for near real-time estimation of marine sediment TOC and land-use classification.


Assuntos
Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Aprendizado de Máquina , Sedimentos Geológicos/química , Carbono/análise , Monitoramento Ambiental/métodos
9.
Food Chem ; 460(Pt 1): 140479, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053271

RESUMO

Heavy metals such as cadmium (Cd), arsenic (As), and lead (Pb) pose significant health risks, particularly in Asia, where rice is a staple for nearly three billion people. Despite their known dangers and environmental prevalence, studies addressing their concentrations in rice across different regions and the associated health implications remain insufficient. This review systematically examines the occurrence and impact of these toxic elements, filling a critical gap in the literature. Data from seven countries indicate mean concentrations in the order of Pb > As>Cd, with values of 0.255 ± 0.013, 0.236 ± 0.317, and 0.136 ± 0.150 mg/kg, respectively. Uncertainty analysis shows extensive variability, especially for Cd, with a 95% confidence interval range from 0.220 to 0.992 mg/kg. The typical daily intake of heavy metals through rice consumption, in the order of As>Cd > Pb, frequently exceeds safe limits. Generally, data obtained from various studies showed that children were more prone to heavy metal contamination through rice consumption than adults. This review is fundamental for ongoing monitoring, future research, and management strategies to reduce heavy metal contamination in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA