Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204666

RESUMO

The rise of antimicrobial resistance to antibiotics (AMR) as a healthcare crisis has led to a tremendous social and economic impact, whose damage poses a significant threat to future generations. Current treatments either are less effective or result in further acquired resistance. At the same time, several new antimicrobial discovery approaches are expensive, slow, and relatively poorly equipped for translation into the clinical world. Therefore, the use of nanomaterials is presented as a suitable solution. In particular, this review discusses selenium nanoparticles (SeNPs) as one of the most promising therapeutic agents based in the nanoscale to treat infections effectively. This work summarizes the latest advances in the synthesis of SeNPs and their progress as antimicrobial agents using traditional and biogenic approaches. While physiochemical methods produce consistent nanostructures, along with shortened processing procedures and potential for functionalization of designs, green or biogenic synthesis represents a quick, inexpensive, efficient, and eco-friendly approach with more promise for tunability and versatility. In the end, the clinical translation of SeNPs faces various obstacles, including uncertain in vivo safety profiles and mechanisms of action and unclear regulatory frameworks. Nonetheless, the promise possessed by these metalloid nanostructures, along with other nanoparticles in treating bacterial infections and slowing down the AMR crisis, are worth exploring.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Selênio/química , Selênio/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/uso terapêutico , Selênio/metabolismo
2.
Int J Biol Macromol ; 242(Pt 4): 125185, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276899

RESUMO

Genetic medicine, including ribonucleic acid (RNA) therapy, has delivered numerous progresses to the treatment of diseases thanks to the development of lipid nanoparticles (LNPs) as a delivery vehicle. However, RNA therapeutics are still limited by the lack of safe, precise, and efficient delivery outside of the liver. Thus, to fully realize the potential of genetic medicine, strategies to arm LNPs with extrahepatic targeting capabilities are urgently needed. This review explores the current state of next-generation LNPs that can bring RNA biomolecules to their targeted organ. The main approaches commonly used are described, including the modulation of internal lipid chemistries, the use of conjugated targeting moieties, and the designs of clinical administration. This work will demonstrate the advances in each approach and the remaining challenges in the field, focusing on clinical translation.


Assuntos
Nanopartículas , RNA , Lipídeos , Lipossomos , Interferência de RNA , RNA Interferente Pequeno
3.
Mater Adv ; 3(21): 7742-7756, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36353516

RESUMO

The unique chemical and physical features of nanomaterials make them ideal for developing new and better sensing devices, particularly biosensors. Various types of nanoparticles, including metal, oxide, and semiconductor nanostructures, have been utilized to manufacture biosensors, and each kind of nanoparticle plays a unique role in the sensing system. Nanoparticles provide critical roles such as immobilizing biomolecules, catalyzing electrochemical processes, enhancing electron transport between electrode surfaces and proteins, identifying biomolecules, and even functioning as the reactant for the catalytic reaction. Among all the potential nanosystems to be used in biosensors, selenium nanoparticle (SeNP) features have sparked a growing interest in their use in bridging biological recognition events and signal transduction, as well as in developing biosensing devices with novel applications for identification, quantification, and study of different analytes of biological relevance. The optical, physical, and chemical characteristics of differently shaped SeNPs opened up a world of possibilities for developing biosensors of biomedical interest. The outstanding biocompatibility, conductivity, catalytic characteristics, high surface-to-volume ratio, and high density of SeNPs have enabled their widespread use in developing electrochemical biosensors with superior analytical performance compared to other designs of biosensors. This review summarizes recent and ongoing advances, current challenges, and future research perspectives on real-world applications of Se-based nanobiosensors to detect biologically relevant analytes such as hydrogen peroxide, heavy metals, or glucose. Due to the superior properties and multifunctionality of Se-NPs biosensors, these structures can open up considerable new horizons in the future of healthcare and medicine.

4.
Biotechnol Rep (Amst) ; 34: e00714, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686001

RESUMO

The American Cancer Society estimated around 61,090 new cases of leukemia were diagnosed, and around 23,660 people died from this disease in the United States alone in 2021. Due to its burden on society, there is an unmet need to explore innovative approaches to overcome leukemia. Among different strategies that have been explored, nanotechnology appears to be a promising and effective approach for therapeutics. Specifically, biogenic silver and gold nanoparticles (NPs) have attracted significant attention for their antineoplastic activity toward leukemia cancer cells due to their unique physicochemical properties. Indeed, these nanostructures have emerged as useful approaches in anti-leukemic applications, either as carriers to enhance drug bioavailability and its targeted delivery to a specific organ or as a novel therapeutic agent. This review explores recent advances in green synthesized nanomaterials and their potential use against leukemia, especially focusing on silver (Ag) and gold (Au) nanostructures. In detail, we have reviewed various eco-friendly methods of bio-synthesized NPs, their analytical properties, and toxicity effects against leukemic models. This overview confirms the satisfactory potency of biogenic NPs toward leukemic cells and desirable safety profiles against human native cells, which opens a promising door toward commercializing these types of nontherapeutic agents if challenges involve clinical validations, reproducibility, and scalability could be resolved.

5.
Biosens Bioelectron ; 197: 113732, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741959

RESUMO

CRISPR diagnostics (CRISPR-Dx) offer a wide range of enhancements compared to traditional nanobiosensors by taking advantage of the excellent trans-cleavage activity of the CRISPR/Cas systems. However, the single-stranded DNA/RNA reporters of the current CRISPR-Dx suffer from poor stability and limited sensitivity, which make their application in complex biological environments difficult. In comparison, nanomaterials, especially metal nanoparticles, exhibits robust stability and desirable optical and electrocatalytical properties, which make them ideal as reporter molecules. Therefore, biosensing research is moving towards the use of the trans-cleavage activity of CRISPR/Cas effectors on metal nanoparticles and apply the new phenomenon to develop novel nanobiosensors to target various targets such as viral infections, genetic mutations and tumor biomarkers, by using different sensing methods, including, but not limited to fluorescence, luminescence resonance, colorimetric and electrochemical signal readout. In this review, we explore some of the most recent advances in the field of CRISPR-powered nanotechnological biosensors. Demonstrating high accuracy, sensitivity, selectivity and versatility, nanobiosensors along with CRISPR/Cas technology offer tremendous potential for next-generation diagnostics of multiple targets, especially at the point of care and without any target amplification.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sistemas CRISPR-Cas/genética , DNA/genética , DNA de Cadeia Simples
6.
J Funct Biomater ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662072

RESUMO

The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.

7.
Materials (Basel) ; 14(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300763

RESUMO

Bioceramics such as calcium silicate (Ca-Si), have gained a lot of interest in the biomedical field due to their strength, osteogenesis capability, mechanical stability, and biocompatibility. As such, these materials are excellent candidates to promote bone and tissue regeneration along with treating bone cancer. Bioceramic scaffolds, functionalized with appropriate materials, can achieve desirable photothermal effects, opening up a bifunctional approach to osteosarcoma treatments-simultaneously killing cancerous cells while expediting healthy bone tissue regeneration. At the same time, they can also be used as vehicles and cargo structures to deliver anticancer drugs and molecules in a targeted manner to tumorous tissue. However, the traditional synthesis routes for these bioceramic scaffolds limit the macro-, micro-, and nanostructures necessary for maximal benefits for photothermal therapy and drug delivery. Therefore, a different approach to formulate bioceramic scaffolds has emerged in the form of 3D printing, which offers a sustainable, highly reproducible, and scalable method for the production of valuable biomedical materials. Here, calcium silicate (Ca-Si) is reviewed as a novel 3D printing base material, functionalized with highly photothermal materials for osteosarcoma therapy and drug delivery platforms. Consequently, this review aims to detail advances made towards functionalizing 3D-printed Ca-Si and similar bioceramic scaffold structures as well as their resulting applications for various aspects of tumor therapy, with a focus on the external surface and internal dispersion functionalization of the scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA