Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 23076, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155195

RESUMO

A composite material comprising carbon black and Sb-doped SnO2 (ATO) is employed as a support for a Pt catalyst in a membrane electrode assembly (MEA) to improve the performance of a proton-exchange membrane fuel cell under low-humidity conditions. The effects of Sb-doping on the crystal, structural, and electrochemical characteristics of ATO particles are being examined. In a single cell test, the ratio of Sb in ATO is systematically optimized to improve performance. The distribution of Pt nanoparticles is uniform on carbon black and ATO carrier, forming notable triple-junction points at the interface of carbon black and ATO carrier. This structure thus induces a strong interaction between Pt and ATO, promoting the content of metallic Pt. Compared with a Pt/C catalyst, the best-performing Pt/C-ATO catalyst exhibits superior electrochemical activity, stability, and CO tolerance. The power density of MEA with the Pt/C-ATO catalyst is 15% higher than that of the MEA with the Pt/C catalyst.

2.
Materials (Basel) ; 16(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37176199

RESUMO

This study focuses on modifying the surface of an AA 5052-H32 aluminum alloy using plasma treatment. Discharge power, exposure time, and working gas were adjusted as process parameters to improve the adhesion between the aluminum alloy and glass fiber-reinforced thermoplastic (GFRTP) polycarbonate composite. The surface composition and morphology of the aluminum alloy sheet were analyzed by X-ray photoelectron spectroscopy and scanning electron microscopy, and surface roughness and wettability were evaluated using a surface roughness-measuring instrument and contact angle goniometry, respectively. The bonding performance of GFRTP/aluminum alloy was also assessed. The surface of the aluminum alloy was subjected to chemical treatment prior to plasma treatment. The results revealed that nitrogen plasma treatment led to a substantial increase (25%) in bonding strength due to the synergistic effect of rough surface mechanical bonding and chemical bonding through functional groups between the aluminum alloy and GFRTP. However, the improvement in surface wettability by plasma treatment is time dependent and may gradually diminish over time due to the re-adsorption of hydrocarbon contamination from the surrounding air.

3.
Sci Rep ; 11(1): 20719, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671084

RESUMO

In this study, we use nitrogen-doped to improving the gas-sensing properties of reduced graphene oxide. Graphene oxide was prepared according to a modified Hummers' method and then nitrogen-doped reduced graphene oxide (N-rGO) was synthesized by a hydrothermal method using graphene oxide and NH4OH as precursors. The rGO is flat and smooth with a sheet-like morphology while the N-rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas sensitivity. The N-rGO and the rGO sensors showed n-type and p-type semiconducting behaviors in ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) at room temperature. The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). Compared with pure rGO, N-rGO exhibited a higher sensitivity and excellent reproducibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA