RESUMO
The CORUM database has been providing comprehensive reference information about experimentally characterized, mammalian protein complexes and their associated biological and biomedical properties since 2007. Given that most catalytic and regulatory functions of the cell are carried out by protein complexes, their composition and characterization is of greatest importance in basic and disease biology. The new CORUM 4.0 release encompasses 5204 protein complexes offering the largest and most comprehensive publicly available dataset of manually curated mammalian protein complexes. The CORUM dataset is built from 5299 different genes, representing 26% of the protein coding genes in humans. Complex information from 3354 scientific articles is mainly obtained from human (70%), mouse (16%) and rat (9%) cells and tissues. Recent curation work includes sets of protein complexes, Functional Complex Groups, that offer comprehensive collections of published data in specific biological processes and molecular functions. In addition, a new graphical analysis tool was implemented that displays co-expression data from the subunits of protein complexes. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.
Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos , Animais , Humanos , Camundongos , Ratos , Bases de Dados Factuais , Mamíferos , Complexos Multiproteicos/químicaRESUMO
Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung.