Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 1, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600289

RESUMO

BACKGROUND: Transplantation of differentiated cells from human-induced pluripotent stem cells (hiPSCs) holds great promise for clinical treatments. Eliminating the risk factor of malignant cell transformation is essential for ensuring the safety of such cells. This study was aimed at assessing and mitigating mutagenicity that may arise during the cell culture process in the protocol of pancreatic islet cell (iPIC) differentiation from hiPSCs. METHODS: We evaluated the mutagenicity of differentiation factors used for hiPSC-derived pancreatic islet-like cells (iPICs). We employed Ames mutagenicity assay, flow cytometry analysis, immunostaining, time-resolved fluorescence resonance energy transfer-based (TR-FRET) cell-free dose-response assays, single-cell RNA-sequencing and in vivo efficacy study. RESULTS: We observed a mutagenic effect of activin receptor-like kinase 5 inhibitor II (ALK5iII). ALK5iII is a widely used ß-cell inducer but no other tested ALK5 inhibitors induced ß-cells. We obtained kinase inhibition profiles and found that only ALK5iII inhibited cyclin-dependent kinases 8 and 19 (CDK8/19) among all ALK5 inhibitors tested. Consistently, CDK8/19 inhibitors efficiently induced ß-cells in the absence of ALK5iII. A combination treatment with non-mutagenic ALK5 inhibitor SB431542 and CDK8/19 inhibitor senexin B afforded generation of iPICs with in vitro cellular composition and in vivo efficacy comparable to those observed with ALK5iII. CONCLUSION: Our findings suggest a new risk mitigation approach for cell therapy and advance our understanding of the ß-cell differentiation mechanism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Quinase 8 Dependente de Ciclina
2.
Sci Rep ; 12(1): 4740, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304548

RESUMO

The differentiation of pancreatic endocrine cells from human pluripotent stem cells has been thoroughly investigated for their application in cell therapy against diabetes. Although non-endocrine cells are inevitable contaminating by-products of the differentiation process, a comprehensive profile of such cells is lacking. Therefore, we characterized non-endocrine cells in iPSC-derived pancreatic islet cells (iPIC) using single-cell transcriptomic analysis. We found that non-endocrine cells consist of (1) heterogeneous proliferating cells, and (2) cells with not only pancreatic traits but also liver or intestinal traits marked by FGB or AGR2. Non-endocrine cells specifically expressed FGFR2, PLK1, and LDHB. We demonstrated that inhibition of pathways involving these genes selectively reduced the number of non-endocrine cells in the differentiation process. These findings provide useful insights into cell purification approaches and contribute to the improvement of the mass production of endocrine cells for stem cell-derived cell therapy for diabetes.


Assuntos
Células Endócrinas , Células-Tronco Pluripotentes Induzidas , Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Ilhotas Pancreáticas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
3.
Diabetes ; 69(4): 634-646, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32005704

RESUMO

The host environment is a crucial factor for considering the transplant of stem cell-derived immature pancreatic cells in patients with type 1 diabetes. Here, we investigated the effect of insulin (INS)-deficient diabetes on the fate of immature pancreatic endocrine cell grafts and the underlying mechanisms. Human induced pluripotent stem cell-derived pancreatic endocrine progenitor cells (EPCs), which contained a high proportion of chromogranin A+ NK6 homeobox 1+ cells and very few INS+ cells, were used. When the EPCs were implanted under the kidney capsule in immunodeficient mice, INS-deficient diabetes accelerated increase in plasma human C-peptide, a marker of graft-derived INS secretion. The acceleration was suppressed by INS infusion but not affected by partial attenuation of hyperglycemia by dapagliflozin, an INS-independent glucose-lowering agent. Immunohistochemical analyses indicated that the grafts from diabetic mice contained more endocrine cells including proliferative INS-producing cells compared with that from nondiabetic mice, despite no difference in whole graft mass between the two groups. These data suggest that INS-deficient diabetes upregulates the INS-secreting capacity of EPC grafts by increasing the number of endocrine cells including INS-producing cells without changing the graft mass. These findings provide useful insights into postoperative diabetic care for cell therapy using stem cell-derived pancreatic cells.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Animais , Imuno-Histoquímica , Camundongos
4.
Stem Cell Res ; 8(2): 274-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22056147

RESUMO

Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic ß-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3ß inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-ß (TGF-ß) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-ß inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células Secretoras de Insulina/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Endoderma/citologia , Endoderma/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA