Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(20): E1230-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22517738

RESUMO

Many insects are associated with obligate symbiotic bacteria, which are localized in specialized cells called bacteriocytes, vertically transmitted through host generations via ovarial passage, and essential for growth and reproduction of their hosts. Although vertical transmission is pivotal for maintenance of such intimate host-symbiont associations, molecular and cellular mechanisms underlying the process are largely unknown. Here we report a cellular mechanism for vertical transmission of the obligate symbiont Buchnera in the pea aphid Acyrthosiphon pisum. In the aphid body, Buchnera cells are transmitted from maternal bacteriocytes to adjacent blastulae at the ovariole tips in a highly coordinated manner. By making use of symbiont-manipulated strains of A. pisum, we demonstrated that the facultative symbiont Serratia is, unlike Buchnera, not transmitted from maternal bacteriocytes to blastulae, suggesting a specific mechanism for Buchnera transmission. EM observations revealed a series of exo-/endocytotic processes operating at the bacteriocyte-blastula interface: Buchnera cells are exocytosed from the maternal bacteriocyte, temporarily released to the extracellular space, and endocytosed by the posterior syncytial cytoplasm of the blastula. These results suggest that the selective Buchnera transmission is likely attributable to Buchnera-specific exocytosis by the maternal bacteriocyte, whereas both Buchnera and Serratia are nonselectively incorporated by the endocytotic activity of the posterior region of the blastula. The sophisticated cellular mechanism for vertical transmission of Buchnera must have evolved to ensure the obligate host-symbiont association, whereas facultative symbionts like Serratia may coopt the endocytotic component of the mechanism for their entry into the host embryos.


Assuntos
Afídeos/microbiologia , Evolução Biológica , Blástula/fisiologia , Buchnera/fisiologia , Endocitose/fisiologia , Serratia/fisiologia , Simbiose/fisiologia , Animais , Blástula/ultraestrutura , Linhagem da Célula/fisiologia , Feminino , Hibridização In Situ , Microscopia Eletrônica , Especificidade da Espécie
2.
Appl Environ Microbiol ; 80(2): 525-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212575

RESUMO

A gammaproteobacterial facultative symbiont of the genus Rickettsiella was recently identified in the pea aphid, Acyrthosiphon pisum. Infection with this symbiont altered the color of the aphid body from red to green, potentially affecting the host's ecological characteristics, such as attractiveness to different natural enemies. In European populations of A. pisum, the majority of Rickettsiella-infected aphids also harbor another facultative symbiont, of the genus Hamiltonella. We investigated this Rickettsiella symbiont for its interactions with the coinfecting Hamiltonella symbiont, its phenotypic effects on A. pisum with and without Hamiltonella coinfection, and its infection prevalence in A. pisum populations. Histological analyses revealed that coinfecting Rickettsiella and Hamiltonella exhibited overlapping localizations in secondary bacteriocytes, sheath cells, and hemolymph, while Rickettsiella-specific localization was found in oenocytes. Rickettsiella infections consistently altered hosts' body color from red to green, where the greenish hue was affected by both host and symbiont genotypes. Rickettsiella-Hamiltonella coinfections also changed red aphids to green; this greenish hue tended to be enhanced by Hamiltonella coinfection. With different host genotypes, Rickettsiella infection exhibited either weakly beneficial or nearly neutral effects on host fitness, whereas Hamiltonella infection and Rickettsiella-Hamiltonella coinfection had negative effects. Despite considerable frequencies of Rickettsiella infection in European and North American A. pisum populations, no Rickettsiella infection was detected among 1,093 insects collected from 14 sites in Japan. On the basis of these results, we discuss possible mechanisms for the interaction of Rickettsiella with other facultative symbionts, their effects on their hosts' phenotypes, and their persistence in natural host populations. We propose the designation "Candidatus Rickettsiella viridis" for the symbiont.


Assuntos
Afídeos/microbiologia , Coxiellaceae/fisiologia , Simbiose , Animais , Afídeos/fisiologia , Coxiellaceae/genética , Japão , Dados de Sequência Molecular , Fenótipo , Pigmentação , Proteobactérias/fisiologia
3.
Insects ; 15(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38249069

RESUMO

The molecular mechanisms underlying insect gall formation remain unclear. A major reason for the inability to identify the responsible genes is that only a few systems can be experimentally validated in the laboratory. To overcome these problems, we established a new galling insect model, Smicronyx madaranus. Our manipulation experiments using nail polish sealing and insecticide treatment revealed an age-dependent change in gall formation by S. madaranus; adult females and larvae are responsible for gall induction and enlargement, respectively. Furthermore, it has been suggested that substances released during oviposition and larval feeding are involved in each process. Phylogenetic analysis showed that gall-forming weevils, including S. madaranus, belong to two distinct lineages that utilize different host plants. This may indicate that gall-forming traits evolved independently in these Smicronyx lineages. The efficacy of RNA interference (RNAi) in S. madaranus was confirmed by targeting the multicopper oxidase 2 gene. It is expected that the mechanisms of gall formation will be elucidated by a comprehensive functional analysis of candidate genes using RNAi and the S. madaranus galling system in the near future.

4.
Microbiol Spectr ; 11(1): e0468422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546855

RESUMO

Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.


Assuntos
Hemípteros , Animais , Feminino , Hemípteros/genética , Hibridização in Situ Fluorescente , Enterobacteriaceae/genética , Bactérias/genética , Simbiose
5.
PNAS Nexus ; 2(1): pgac293, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712932

RESUMO

Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (OsdsxF ) while suppressing the male-specific variant (OsdsxM ), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.

6.
Sci Rep ; 12(1): 1543, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105894

RESUMO

Lycorma delicatula has expanded its distribution from China to Japan, Korea, and the USA, causing significant economic damage to vineyards in the latter two countries. However, in Japan, L. delicatula has long been limited to the Hokuriku region, central Japan, and no significant damage to crops has been reported since it was first reported there in 2009. Manipulation experiments and field observations in the Hokuriku region, where winter precipitation is extremely high, revealed that egg numbers and hatchability were significantly reduced in exposed places, especially when wax was excluded from the egg mass. Phylogenetic analysis showed that the population in Japan could be divided into at least two groups. Most L. delicatula samples from Hokuriku formed a clade with those from northwestern China. Samples from Okayama, where the distribution of L. delicatula was recently confirmed, had the same haplotype as those from central China, Korea, and the USA. These results suggest that environmental factors and genetic characteristics of L. delicatula are involved in the relatively slow expansion of its distribution in Hokuriku. Conversely, in Okayama, where precipitation is relatively low, the rapidly increasing haplotype in Korea and the USA was detected, leading to concerns that its distribution will expand further.


Assuntos
Distribuição Animal , Hemípteros/genética , Animais , Feminino , Espécies Introduzidas , Japão , Masculino , Oviposição , Óvulo , Filogenia , Estações do Ano , Comportamento Sexual Animal
7.
Biol Lett ; 7(2): 245-8, 2011 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20880856

RESUMO

In Japan, pea aphids Acyrthosiphon pisum mainly feed on vetch and clover, and many aphid clones produce more progeny on vetch than on clover. In this context, particular genotypes of the facultative symbiont Regiella insecticola enhance reproduction of infected pea aphids specifically on clover, thereby broadening the suitable food plant range of the insect. A species that is sympatric to A. pisum, vetch aphids Megoura crassicauda, are commonly found on vetch but not on clover. Laboratory rearing of M. crassicauda strains revealed active reproduction on vetch but substantially no reproduction on clover. Experimental transfection of Regiella from A. pisum to M. crassicauda by haemolymph injection established stable and heritable infection in the recipients, although no Regiella infection has been detected in natural populations of M. crassicauda. Different strains of Regiella-transfected M. crassicauda grew and reproduced on vetch, but exhibited lower fitness in comparison with corresponding uninfected aphid strains. Strikingly, the Regiella-transfected M. crassicauda exhibited improved survival and some reproduction on clover. These results suggest that Regiella has the potential to confer an ecological trait, adaptation to clover, on novel insect hosts, and also account for why Regiella is able to infect M. crassicauda but is scarcely found in these aphid populations.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/fisiologia , Adaptação Fisiológica , Animais , Afídeos/fisiologia , Genótipo , Medicago , Reprodução/fisiologia , Simbiose , Vicia
8.
BMC Zool ; 6(1): 19, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37170139

RESUMO

BACKGROUND: Aphids can be positioned as robust pest insects in farming and as ones of the model organisms for arthropods in molecular biology. Carotenoids are pigments that protect organisms from photooxidative damage caused by excessive light. Aphids were shown to possess genes of fungal origin for carotenoid biosynthesis, whereas a little knowledge was available about the functions of the genes and the biosynthetic pathway. Even carotenoid species contained in aphids were not enough understood. Main purpose of this study is to clarify these insufficient findings. RESULTS: The whole carotenoid biosynthetic pathway of the pea aphid (Acyrthosiphon pisum) was elucidated at the gene level, through comprehensive functional analysis of its carotenogenic genes, using Escherichia coli that synthesized carotenoid substrates, along with structural and quantitative analysis of carotenoids from various aphid species. Four genes were needed to synthesize all carotenoids accumulated in aphids from geranylgeranyl diphosphate. The tor gene mediated desaturation reaction from phytoene to 3,4-didehydrolycopene. It was revealed that a gene designated ApCrtYB3, which was considered to have functionally evolved in aphids, can convert lycopene into uncommon carotenoids with the γ-ring such as (6'S)-ß,γ-carotene and γ,γ-carotene. We further demonstrated that the atypical carotenoids work as ecological indicators for estimating the food chain from aphids to predatory arthropods, and showed that aphids contributed with significant levels to the food chain from insect herbivores to several predatory arthropods, i.e., the red dragonfly (Sympetrum frequens; adults), seven-spotted ladybird (Coccinella septempunctata), and two spiders, Oxyopes sertatus and Nephila clavata. Gut microflora of the dragonfly (mature adults) was also found to include endosymbiotic bacteria such as Serratia symbiotica specific to the black bean aphid (Aphis fabae). CONCLUSIONS: We revealed the whole carotenoid biosynthetic pathway of aphids, including functional identification of the corresponding genes. Subsequently, we showed that arthropodal food chain can be estimated using the uncommon carotenoids of aphids as ecological indicators. This result indicated that aphids made significant contributions to the food chain of several predatory arthropods including the red-dragonfly adults. Aphids are likely to be positioned as an important "phytochemicals" source for some predatory insects and arachnids, which are often active under bright sunlight.

9.
Sci Rep ; 11(1): 13013, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155293

RESUMO

Insect-induced galls are microhabitats distinct from the outer environment that support inhabitants by providing improved nutrients, defence against enemies, and other unique features. It is intriguing as to how insects reprogram and modify plant morphogenesis. Because most of the gall systems are formed on trees, it is difficult to maintain them in laboratories and to comprehend the mechanisms operative in them through experimental manipulations. Herein, we propose a new model insect, Smicronyx madaranus, for studying the mechanisms of gall formation. This weevil forms spherical galls on the shoots of Cuscuta campestris, an obligate parasitic plant. We established a stable system for breeding and maintaining this ecologically intriguing insect in the laboratory, and succeeded in detailed analyses of the gall-forming behaviour, gall formation process, and histochemical and physiological features. Parasitic C. campestris depends on host plants for its nutrients, and usually shows low chlorophyll content and photosynthetic activity. We demonstrate that S. madaranus-induced galls have significantly increased CO2 absorbance. Moreover, chloroplasts and starch accumulated in gall tissues at locations inhabited by the weevil larvae. These results suggest that the gall-inducing weevils enhance the photosynthetic activity in C. campestris, and modify the plant tissue to a nutrient-rich shelter for them.


Assuntos
Interações Hospedeiro-Parasita , Insetos , Fotossíntese , Tumores de Planta/etiologia , Plantas , Animais , Clorofila , Suscetibilidade a Doenças , Fenótipo , Tumores de Planta/parasitologia
10.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004445

RESUMO

The genome of "Candidatus Regiella insecticola" strain TUt, a facultative bacterial symbiont of the pea aphid Acyrthosiphon pisum, was analyzed. We determined a 2.5-Mb draft genome consisting of 14 contigs; this will contribute to the understanding of the symbiont, which underpins various ecologically adaptive traits of the host insect.

11.
Sci Rep ; 8(1): 15432, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337547

RESUMO

Wolbachia are ubiquitous bacterial endosymbionts of arthropods and affect host gene expression. Although Wolbachia infections were suggested to modulate sleep in flies, their influence on the circadian clock remained obscure. Here, we screened bacterial symbionts in a laboratory Drosophila melanogaster colony, and observed widespread infections of wMel strain Wolbachia. We established a Wolbachia-free strain from a clock gene reporter strain, period-luciferase (per-luc). Temperature (19-29 °C)-compensated free-running periods were detected regardless of infections which may reflect the lack of wMel infections in central circadian pacemaker neurons. However, locomotor activity levels during the night or subjective night were significantly amplified in uninfected flies. Moreover, the behavioral phenotype of F1 offspring of an uninfected female and infected male resembled that of uninfected flies. This trait is consistent with maternal transmission of Wolbachia infection. Interestingly, per-luc activities in headless bodies, as an index of peripheral circadian oscillators, were severely damped in uninfected flies. Additionally, circadian amplitudes of PER immunoreactivities in Malpighian tubules were reduced in uninfected flies. These results demonstrate that Wolbachia boost fly peripheral clock oscillations and diurnal behavioral patterns. Genetic mechanisms underlying behavioral rhythms have been widely analyzed using mutant flies whereas screening of Wolbachia will be necessary for future studies.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/microbiologia , Interações entre Hospedeiro e Microrganismos , Locomoção/fisiologia , Wolbachia/fisiologia , Animais , Antibacterianos/farmacologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Cruzamentos Genéticos , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Feminino , Genes Reporter , Locomoção/efeitos da radiação , Masculino , Proteínas Circadianas Period/genética , Estimulação Luminosa , Simbiose/fisiologia , Tetraciclina/farmacologia , Wolbachia/efeitos dos fármacos
12.
mBio ; 9(3)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895637

RESUMO

Members of the genus Rickettsiella are bacterial pathogens of insects and other arthropods. Recently, a novel facultative endosymbiont, "Candidatus Rickettsiella viridis," was described in the pea aphid Acyrthosiphon pisum, whose infection causes a striking host phenotype: red and green genetic color morphs exist in aphid populations, and upon infection with the symbiont, red aphids become green due to increased production of green polycyclic quinone pigments. Here we determined the complete genome sequence of the symbiont. The 1.6-Mb circular genome, harboring some 1,400 protein-coding genes, was similar to the genome of entomopathogenic Rickettsiella grylli (1.6 Mb) but was smaller than the genomes of phylogenetically allied human pathogens Coxiella burnetii (2.0 Mb) and Legionella pneumophila (3.4 Mb). The symbiont's metabolic pathways exhibited little complementarity to those of the coexisting primary symbiont Buchnera aphidicola, reflecting the facultative nature of the symbiont. The symbiont genome harbored neither polyketide synthase genes nor the evolutionarily allied fatty acid synthase genes that are suspected to catalyze the polycyclic quinone synthesis, indicating that the green pigments are produced not by the symbiont but by the host aphid. The symbiont genome retained many type IV secretion system genes and presumable effector protein genes, whose homologues in L. pneumophila were reported to modulate a variety of the host's cellular processes for facilitating infection and virulence. These results suggest the possibility that the symbiont is involved in the green pigment production by affecting the host's metabolism using the secretion machineries for delivering the effector molecules into the host cells.IMPORTANCE Insect body color is relevant to a variety of biological aspects such as species recognition, sexual selection, mimicry, aposematism, and crypsis. Hence, the bacterial endosymbiont "Candidatus Rickettsiella viridis," which alters aphid body color from red to green, is of ecological interest, given that different predators preferentially exploit either red- or green-colored aphids. Here we determined the complete 1.6-Mb genome of the symbiont and uncovered that, although the red-green color transition was ascribed to upregulated production of green polycyclic quinone pigments, the symbiont genome harbored few genes involved in the polycyclic quinone biosynthesis. Meanwhile, the symbiont genome contained type IV secretion system genes and presumable effector protein genes, whose homologues modulate eukaryotic cellular processes for facilitating infection and virulence in the pathogen Legionella pneumophila We propose the hypothesis that the symbiont may upregulate the host's production of polycyclic quinone pigments via cooption of secretion machineries and effector molecules for pathogenicity.


Assuntos
Afídeos/química , Afídeos/microbiologia , Coxiellaceae/isolamento & purificação , Simbiose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cor , Coxiellaceae/classificação , Coxiellaceae/genética , Coxiellaceae/fisiologia , Genoma Bacteriano , Genômica , Filogenia
13.
FEMS Microbiol Ecol ; 60(2): 229-39, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17313660

RESUMO

Multiple endosymbionts commonly coexist in the same host insects. In order to gain an understanding of the biological roles of the individual symbionts in such complex systems, experimental techniques for enabling the selective removal of a specific symbiont from the host are of great importance. By using the pea aphid-Buchnera-Serratia endosymbiotic system as a model, the efficacy, generality, and fitness consequences of selective elimination techniques at various antibiotic doses and under a variety of host genotypes were investigated. In all the disymbiotic aphid strains examined, the facultative symbiont Serratia was selectively eliminated by ampicillin treatment in a dose-dependent manner, suggesting a generality of the elimination technique irrespective of host genotype. However, fitness consequences of the Serratia elimination differed between the aphid strains, indicating substantial effects of host genotype. In all the disymbiotic aphid strains, the obligate symbiont Buchnera was selectively eliminated by rifampicin treatment irrespective of the antibiotic dose. However, the survival and reproduction of the Buchnera-free aphids varied in a dose-dependent manner, and the dose dependence was strikingly different between the aphid genotypes. These results provide a basis for the development of new protocols for manipulating insect endosymbiotic microbiota.


Assuntos
Afídeos/microbiologia , Buchnera/crescimento & desenvolvimento , Simbiose/fisiologia , Ampicilina/farmacologia , Animais , Afídeos/efeitos dos fármacos , Afídeos/genética , Buchnera/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genótipo , Hibridização in Situ Fluorescente , Rifampina/farmacologia , Serratia/efeitos dos fármacos , Serratia/crescimento & desenvolvimento , Simbiose/efeitos dos fármacos , Simbiose/genética
14.
Insect Sci ; 24(5): 798-808, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27514019

RESUMO

Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of Hamiltonella-Rickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella-mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella-mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats.


Assuntos
Afídeos/microbiologia , Coxiellaceae/fisiologia , Enterobacteriaceae/fisiologia , Interações Hospedeiro-Parasita , Simbiose , Vespas/fisiologia , Animais , Afídeos/genética , Afídeos/parasitologia , Coinfecção , Feminino , Masculino , Fenótipo
15.
Curr Opin Insect Sci ; 17: 74-80, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27720077

RESUMO

Aphids are small phloem sap-feeding insects, and show color polymorphism even within the same species. Crossing experiments have revealed the inheritance pattern of the body color. Coloration of aphids is determined by mainly three pigments, melanin, carotenoid, and aphin, and is influenced by both abiotic and biotic environmental factors. Aphid body colors also seem to correspond with specific biological functions under various environments. Partly due to the presence of natural enemies in the environment, a variety of physiological and behavioral responses have evolved in each color form. Thus, predation is one of the most significant external factors for maintaining body color polymorphisms. In addition, endosymbiont infections also influence aphid body color and prey-predator interactions. However, many unsolved questions remain regarding the molecular basis for and biological functions of aphid body colors. Further work, including the development of molecular techniques for comprehensive functional analysis, is needed in these areas.


Assuntos
Afídeos/fisiologia , Pigmentação/fisiologia , Animais , Afídeos/genética , Ecossistema , Pigmentação/genética
16.
Insect Biochem Mol Biol ; 66: 72-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26453817

RESUMO

Endosymbiotic bacteria of the genus Wolbachia often manipulate the reproductive system of their hosts to propagate themselves in host populations. Ostrinia scapulalis moths infected with Wolbachia (wSca) produce female-only progeny (sex chromosomes: ZW), whereas females cured of the infection by antibiotic treatment produce male-only progeny (ZZ). The occurrence of female- and male-only progeny has been attributed to the specific death of the opposite sex during embryonic and larval development. In this bidirectional sex-specific lethality, embryos destined to die express a phenotypic sex opposite to their genotypic sex. On the basis of these findings, we suggested that wSca carries a genetic factor that feminizes the male host, the W chromosome of the host has lost its feminizing function, and discordance between the genotypic and phenotypic sexes underlies this sex-specific death. In the present study, we examined whether the failure of dosage compensation was responsible for this sex-specific mortality. Quantitative PCRs showed that Z-linked gene expression levels in embryos destined to die were not properly dosage compensated; they were approximately two-fold higher in the male progeny of wSca-infected females and approximately two-fold lower in the female progeny of infected-and-cured females. These results support our hypothesis that misdirection of dosage compensation underlies the sex-specific death.


Assuntos
Mecanismo Genético de Compensação de Dose , Mariposas/genética , Mariposas/microbiologia , Wolbachia/fisiologia , Animais , Morte , Feminino , Genótipo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Mariposas/crescimento & desenvolvimento , Cromossomos Sexuais , Diferenciação Sexual , Razão de Masculinidade , Tetraciclina/farmacologia
17.
J Insect Physiol ; 81: 48-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142572

RESUMO

Maternally inherited endosymbiotic bacteria of the genus Wolbachia cause various reproductive alterations in their hosts. Wolbachia induces male-specific death during embryonic and larval stages in the moth Ostrinia scapulalis. To investigate how the density of Wolbachia affects their performance in the host, we attempted to reduce its density using a short, high-temperature treatment of the host at the larval stage. Individuals cured of infection as well as sexual mosaics, which harbor Wolbachia, were obtained by this method in the next generation. The sex of uninfected offspring was exclusively male, similar to that of the offspring of larvae treated with antibiotics. A strong correlation was found between Wolbachia density in female moths and the sex ratio of their progeny. These results suggest that a short, high-temperature treatment at the larval stage reduced the density of Wolbachia in the adult stage, and, hence, inhibited interference with the host's development in the next generation. Since the direct effects of the heat treatment on Wolbachia were transient, this method may be useful for specifying the critical time for interference by Wolbachia in host development.


Assuntos
Mariposas/microbiologia , Wolbachia/fisiologia , Animais , Antibacterianos/farmacologia , Feminino , Interações Hospedeiro-Patógeno , Temperatura Alta , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Mosaicismo , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Razão de Masculinidade , Tetraciclina/farmacologia
18.
PLoS One ; 10(11): e0143728, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618776

RESUMO

Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked), the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed.


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/patogenicidade , Comportamento Predatório , Rickettsia/patogenicidade , Simbiose , Adaptação Fisiológica , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/fisiologia , Besouros/fisiologia
19.
Microbiome ; 3: 63, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667400

RESUMO

BACKGROUND: Aphids are known to live in symbiosis with specific bacteria, called endosymbionts which can be classified as obligate or accessory. Buchnera aphidicola is generally the only obligatory symbiont present in aphids, supplying essential nutrients that are missing in the plants phloem to its host. Pentalonia nigronervosa is the main vector of the banana bunchy top virus, one of the most damageable viruses in banana. This aphid is carrying two symbionts: B. aphidicola (BPn) and Wolbachia sp. (wPn). The high occurrence of Wolbachia in the banana aphid raises questions about the role it plays in this insect. The goal of this study was to go further in the understanding of the role played by the two symbionts in P. nigronervosa. To do so, microinjection tests were made to see the effect of wPn elimination on the host, and then, high-throughput sequencing of the haemolymph was used to analyze the gene content of the symbionts. RESULTS: We observed that the elimination of wPn systematically led to the death of aphids, suggesting that the bacterium could play a mutualistic role. In addition, we identify and annotate 587 and 250 genes for wPn and BPn, respectively, through high-throughput sequencing. Analysis of these genes suggests that the two bacteria are working together for the production of several essential nutrients. The most striking cases are for lysin and riboflavin which are usually provided by B. aphidicola alone to the host. In the banana aphid, the genes involved in the production pathways of these metabolites are shared between the two bacteria making them both essential for the survival of the aphid host. CONCLUSIONS: Our results suggest that a co-obligatory symbiosis between B. aphidicola and Wolbachia occurs in the banana aphid, the two bacteria acting together to supply essential nutrients to the host. This is, to our knowledge, the first time Wolbachia is reported to play an essential role in aphids.


Assuntos
Afídeos/microbiologia , Afídeos/fisiologia , Buchnera/fisiologia , Hemolinfa/microbiologia , Metagenômica , Simbiose , Wolbachia/fisiologia , Animais , Babuvirus , Buchnera/genética , Genes Bacterianos , Hemolinfa/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Musa , Riboflavina/metabolismo , Wolbachia/genética
20.
Proc Biol Sci ; 270(1533): 2543-50, 2003 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-14728775

RESUMO

Almost all aphids harbour an endosymbiotic bacterium, Buchnera aphidicola, in bacteriocytes. Buchnera synthesizes essential nutrients and supports growth and reproduction of the host. Over the long history of endosymbiosis, many essential genes have been lost from the Buchnera genome, resulting in drastic genome reduction and the inability to live outside the host cells. In turn, when deprived of Buchnera, the host aphid suffers retarded growth and sterility. Buchnera and the host aphid are often referred to as highly integrated almost inseparable mutualistic partners. However, we discovered that, even after complete elimination of Buchnera, infection with a facultative endosymbiotic gamma-proteobacterium called pea aphid secondary symbiont (PASS) enabled survival and reproduction of the pea aphid. In the Buchnera-free aphid, PASS infected the cytoplasms of bacteriocytes that normally harbour Buchnera, establishing a novel endosymbiotic system. These results indicate that PASS can compensate for the essential role of Buchnera by physiologically and cytologically taking over the symbiotic niche. By contrast, PASS negatively affected the growth and reproduction of normal host aphids by suppressing the essential symbiont Buchnera. These findings illuminate complex symbiont-symbiont and host-symbiont interactions in an endosymbiotic system, and suggest a possible evolutionary route to novel obligate endosymbiosis by way of facultative endosymbiotic associations.


Assuntos
Afídeos/microbiologia , Evolução Biológica , Buchnera/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Simbiose , Animais , Sequência de Bases , Primers do DNA , Ecossistema , Hibridização In Situ , Dados de Sequência Molecular , Dinâmica Populacional , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA