Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(1): 31-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177909

RESUMO

To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas , Plantas , Imunidade Vegetal , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 120(32): e2307604120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523523

RESUMO

In plants, host-pathogen coevolution often manifests in reciprocal, adaptive genetic changes through variations in host nucleotide-binding leucine-rich repeat immune receptors (NLRs) and virulence-promoting pathogen effectors. In grass powdery mildew (PM) fungi, an extreme expansion of a RNase-like effector family, termed RALPH, dominates the effector repertoire, with some members recognized as avirulence (AVR) effectors by cereal NLR receptors. We report the structures of the sequence-unrelated barley PM effectors AVRA6, AVRA7, and allelic AVRA10/AVRA22 variants, which are detected by highly sequence-related barley NLRs MLA6, MLA7, MLA10, and MLA22 and of wheat PM AVRPM2 detected by the unrelated wheat NLR PM2. The AVR effectors adopt a common scaffold, which is shared with the RNase T1/F1 family. We found striking variations in the number, position, and length of individual structural elements between RALPH AVRs, which is associated with a differentiation of RALPH effector subfamilies. We show that all RALPH AVRs tested have lost nuclease and synthetase activities of the RNase T1/F1 family and lack significant binding to RNA, implying that their virulence activities are associated with neo-functionalization events. Structure-guided mutagenesis identified six AVRA6 residues that are sufficient to turn a sequence-diverged member of the same RALPH subfamily into an effector specifically detected by MLA6. Similar structure-guided information for AVRA10 and AVRA22 indicates that MLA receptors detect largely distinct effector surface patches. Thus, coupling of sequence and structural polymorphisms within the RALPH scaffold of PMs facilitated escape from NLR recognition and potential acquisition of diverse virulence functions.


Assuntos
Ascomicetos , Ascomicetos/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ribonuclease T1/genética , Ribonuclease T1/metabolismo , Polimorfismo Genético , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
3.
Plant Cell ; 33(6): 1863-1887, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751107

RESUMO

Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Imunidade Vegetal/genética
4.
EMBO Rep ; 23(12): e55380, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219690

RESUMO

Interactions between plants and neighboring microbial species are fundamental elements that collectively determine the structure and function of the plant microbiota. However, the molecular basis of such interactions is poorly characterized. Here, we colonize Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profile cotranscriptomes of plants and bacteria six hours after inoculation. We detect both common and distinct cotranscriptome signatures among plant-commensal pairs. In planta responses of commensals are similar to those of a disarmed pathogen characterized by the suppression of genes involved in general metabolism in contrast to a virulent pathogen. We identify genes that are enriched in the genome of plant-associated bacteria and induced in planta, which may be instrumental for bacterial adaptation to the host environment and niche separation. This study provides insights into how plants discriminate among bacterial strains and lays the foundation for in-depth mechanistic dissection of plant-microbiota interactions.

5.
Mol Plant Microbe Interact ; 35(7): 511-526, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35322689

RESUMO

Abiotic stress adversely affects cellular homeostasis and ultimately impairs plant growth, posing a serious threat to agriculture. Climate change modeling predicts increasing occurrences of abiotic stresses such as drought and extreme temperature, resulting in decreasing the yields of major crops such as rice, wheat, and maize, which endangers food security for human populations. Plants are associated with diverse and taxonomically structured microbial communities that are called the plant microbiota. Plant microbiota often assist plant growth and abiotic stress tolerance by providing water and nutrients to plants and modulating plant metabolism and physiology and, thus, offer the potential to increase crop production under abiotic stress. In this review, we summarize recent progress on how abiotic stress affects plants, microbiota, plant-microbe interactions, and microbe-microbe interactions, and how microbes affect plant metabolism and physiology under abiotic stress conditions, with a focus on drought, salt, and temperature stress. We also discuss important steps to utilize plant microbiota in agriculture under abiotic stress.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Microbiota , Agricultura , Produtos Agrícolas , Humanos , Desenvolvimento Vegetal , Estresse Fisiológico
6.
Mol Plant Microbe Interact ; 35(7): 510, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35834295

RESUMO

Interactions between plants and microbes are shaped by the physical world that surrounds them. In nature, the abiotic environment is complex, and factors such as nutrient and water availability, humidity, wind, carbon dioxide levels, salt, pollutants, and temperature all affect the growth and physiology of plants and microbes as well as their interactions. Much of our mechanistic understanding of plant-microbe interactions comes from experiments done in carefully controlled conditions. This Focus Issue looks at how aspects of the abiotic environment affect these plant-microbe interactions, and, conversely, how plant-microbe interactions affect host response to abiotic stress.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.Additional content is available on the Focus on the Role of the Abiotic Environment on Interactions Between Plants and Microbes.Complete Genome Sequence of Curtobacterium sp. C1, a Beneficial Endophyte with the Potential for In-Plant Salinity Stress AlleviationProteasomal Degradation of JAZ9 by Salt- and Drought-Induced Ring Finger 1 During Pathogen Infection.


Assuntos
Secas , Plantas , Endófitos , Plantas/microbiologia , Estresse Fisiológico , Água
7.
New Phytol ; 235(3): 1146-1162, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488494

RESUMO

Abiotic and biotic environments influence a myriad of plant-related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. In the case of the latter, elevated temperature has been shown to be a key factor that underpins host resistance and pathogen virulence. In this study, we elucidate a role for Arabidopsis NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector-triggered immunity to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature. We generated time-series RNA sequencing data of WT Col-0, an NDR1 overexpression line, and ndr1 and ics1-2 mutant plants under elevated temperature. Not surprisingly, the NDR1-overexpression line showed genotype-specific gene expression changes related to defense response and immune system function. The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Plantas/metabolismo , Pseudomonas syringae , Temperatura , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(6): 2364-2373, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674663

RESUMO

In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/imunologia , Imunidade Vegetal , Plantas/genética , Plantas/imunologia , Reprodução , Fatores de Transcrição/metabolismo
9.
Mol Plant Microbe Interact ; 34(1): 3-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33048599

RESUMO

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Plants recognize the presence or invasion of microbes through cell surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs). Although PRRs and NLRs are activated by ligands located in different subcellular compartments through distinct mechanisms, signals initiated from PRRs and NLRs converge into several common signaling pathways with different dynamics. Increasing evidence suggests that PRR- and NLR-mediated signaling extensively crosstalk and such interaction can greatly influence immune response outcomes. Sophisticated experimental setups enabled dissection of the signaling events downstream of PRRs and NLRs with fine temporal and spatial resolution; however, the molecular links underlying the observed interactions in PRR and NLR signaling remain to be elucidated. In this review, we summarize the latest knowledge about activation and signaling mediated by PRRs and NLRs, deconvolute the intimate association between PRR- and NLR-mediated signaling, and propose hypotheses to guide further research on key topics.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Imunidade Vegetal , Fenômenos Fisiológicos Vegetais , Receptores de Reconhecimento de Padrão , Transdução de Sinais
10.
Plant Cell ; 30(10): 2480-2494, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30228125

RESUMO

Plants induce systemic acquired resistance (SAR) upon localized exposure to pathogens. Pipecolic acid (Pip) production via AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) is key for SAR establishment. Here, we report a positive feedback loop important for SAR induction in Arabidopsis thaliana We showed that local activation of the MAP kinases MPK3 and MPK6 is sufficient to trigger Pip production and mount SAR. Consistent with this, mutations in MPK3 or MPK6 led to compromised Pip accumulation upon inoculation with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pto) AvrRpt2, which triggers strong sustained MAPK activation. By contrast, P. syringae pv maculicola and Pto, which induce transient MAPK activation, trigger Pip biosynthesis and SAR independently of MPK3/6. ALD1 expression, Pip accumulation, and SAR were compromised in mutants defective in the MPK3/6-regulated transcription factor WRKY33. Chromatin immunoprecipitation showed that WRKY33 binds to the ALD1 promoter. We found that Pip triggers activation of MPK3 and MPK6 and that MAPK activation after Pto AvrRpt2 inoculation is compromised in wrky33 and ald1 mutants. Collectively, our results reveal a positive regulatory loop consisting of MPK3/MPK6, WRKY33, ALD1, and Pip in SAR induction and suggest the existence of distinct SAR activation pathways that converge at the level of Pip biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transaminases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Resistência à Doença , Retroalimentação Fisiológica , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Ácidos Pipecólicos/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Pseudomonas syringae/patogenicidade , Transaminases/genética , Fatores de Transcrição/genética
11.
Plant Cell ; 30(6): 1199-1219, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29794063

RESUMO

The phytohormone network consisting of jasmonate, ethylene, PHYTOALEXIN-DEFICIENT4, and salicylic acid signaling is required for the two modes of plant immunity, pattern-triggered immunity (PTI), and effector-triggered immunity (ETI). A previous study showed that during PTI, the transcriptional responses of over 5000 genes qualitatively depend on complex interactions between the network components. However, the role of the network in transcriptional reprogramming during ETI and whether it differs between PTI and ETI remain elusive. Here, we generated time-series RNA-sequencing data of Arabidopsis thaliana wild-type and combinatorial mutant plants deficient in components of the network upon challenge with virulent or ETI-triggering avirulent strains of the foliar bacterial pathogen Pseudomonas syringae Resistant plants such as the wild type achieved high-amplitude transcriptional reprogramming 4 h after challenge with avirulent strains and sustained this transcriptome response. Strikingly, susceptible plants including the quadruple network mutant showed almost identical transcriptome responses to resistant plants but with several hours delay. Furthermore, gene coexpression network structure was highly conserved between the wild type and quadruple mutant. Thus, in contrast to PTI, the phytohormone network is required only for achieving high-amplitude transcriptional reprogramming within the early time window of ETI against this bacterial pathogen.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Imunidade Vegetal/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Proc Natl Acad Sci U S A ; 115(13): E3055-E3064, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531038

RESUMO

Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Pseudomonas syringae/genética , Transcriptoma , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento
13.
EMBO J ; 35(1): 46-61, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26574534

RESUMO

Pathogens infect a host by suppressing defense responses induced upon recognition of microbe-associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine-rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs. We report that BAK1 depletion is linked to defense activation through the endogenous PROPEP peptides (Pep epitopes) and their LRR receptor kinases PEPR1/PEPR2, despite critical defects in MAMP signaling. In bak1-knockout plants, PEPR elicitation results in extensive cell death and the prioritization of salicylate-based defenses over jasmonate-based defenses, in addition to elevated proligand and receptor accumulation. BAK1 disruption stimulates the release of PROPEP3, produced in response to Pep application and during pathogen challenge, and renders PEPRs necessary for basal resistance. These findings are biologically relevant, since specific BAK1 depletion coincides with PEPR-dependent resistance to the fungal pathogen Colletotrichum higginsianum. Thus, the PEPR pathway ensures basal resistance when MAMP-triggered defenses are compromised by BAK1 depletion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Colletotrichum/imunologia , Técnicas de Inativação de Genes , Proteínas Serina-Treonina Quinases/genética , Transativadores/metabolismo
14.
EMBO J ; 35(22): 2468-2483, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27679653

RESUMO

Perception of microbe-associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen-activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho-signaling transduction pathway from PRR-mediated pathogen recognition to MAPK activation in plants. We found that the receptor-like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1-LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin-induced MAPK activation and disease resistance to Alternaria brassicicola PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin-induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Quitina/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Alternaria/imunologia , Alternaria/patogenicidade , Arabidopsis/enzimologia , Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
15.
Plant Physiol ; 179(2): 519-532, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545905

RESUMO

Spatiotemporal coordination of protein trafficking among organelles is essential for eukaryotic cells. The post-Golgi interface, including the trans-Golgi network (TGN), is a pivotal hub for multiple trafficking pathways. The Golgi-released independent TGN (GI-TGN) is a compartment described only in plant cells, and its cellular and physiological roles remain elusive. In Arabidopsis (Arabidopsis thaliana), the SYNTAXIN OF PLANTS (SYP) 4 group Qa-SNARE (soluble N-ethylmaleimide) membrane fusion proteins are shared components of TGN and GI-TGN and regulate secretory and vacuolar transport. Here we reveal that GI-TGNs mediate the transport of the R-SNARE VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP) 721 to the plasma membrane. In interactions with a nonadapted powdery mildew pathogen, the SYP4 group of SNAREs is required for the dynamic relocation of VAMP721 to plant-fungus contact sites via GI-TGNs, thereby facilitating complex formation with its cognate SNARE partner PENETRATION1 to restrict pathogen entry. Furthermore, quantitative proteomic analysis of leaf apoplastic fluid revealed constitutive and pathogen-inducible secretion of cell wall-modification enzymes in a SYP4- and VAMP721-dependent manner. Hence, the GI-TGN acts as a transit compartment between the Golgi apparatus and the plasma membrane. We propose a model in which the GA-TGN matures into the GI-TGN and then into secretory vesicles by increasing the abundance of VAMP721-dependent secretory pathway components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Membrana Celular/metabolismo , Parede Celular/metabolismo , Enzimas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mutação , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Proteínas R-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Rede trans-Golgi/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(28): 7456-7461, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652328

RESUMO

Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1, HAI2, and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.


Assuntos
Ácido Abscísico/química , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ciclopentanos/química , Sistema de Sinalização das MAP Quinases , Oxilipinas/química , Aminoácidos/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Indenos/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/química , Imunidade Vegetal , Proteína Fosfatase 2C/metabolismo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Transdução de Sinais , Virulência
17.
PLoS Genet ; 13(5): e1006639, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28472137

RESUMO

Plant immunity protects plants from numerous potentially pathogenic microbes. The biological network that controls plant inducible immunity must function effectively even when network components are targeted and disabled by pathogen effectors. Network buffering could confer this resilience by allowing different parts of the network to compensate for loss of one another's functions. Networks rich in buffering rely on interactions within the network, but these mechanisms are difficult to study by simple genetic means. Through a network reconstitution strategy, in which we disassemble and stepwise reassemble the plant immune network that mediates Pattern-Triggered-Immunity, we have resolved systems-level regulatory mechanisms underlying the Arabidopsis transcriptome response to the immune stimulant flagellin-22 (flg22). These mechanisms show widespread evidence of interactions among major sub-networks-we call these sectors-in the flg22-responsive transcriptome. Many of these interactions result in network buffering. Resolved regulatory mechanisms show unexpected patterns for how the jasmonate (JA), ethylene (ET), phytoalexin-deficient 4 (PAD4), and salicylate (SA) signaling sectors control the transcriptional response to flg22. We demonstrate that many of the regulatory mechanisms we resolved are not detectable by the traditional genetic approach of single-gene null-mutant analysis. Similar to potential pathogenic perturbations, null-mutant effects on immune signaling can be buffered by the network.


Assuntos
Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Flagelina/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Vegetal/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/imunologia , Ciclopentanos/imunologia , Ciclopentanos/metabolismo , Etilenos/imunologia , Etilenos/metabolismo , Flagelina/imunologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/imunologia , Interações Hospedeiro-Patógeno/imunologia , Oxilipinas/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Transcriptoma/imunologia
18.
EMBO Rep ; 18(3): 464-476, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069610

RESUMO

Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe-associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5 Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type-4 feed-forward loop (I4-FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA-mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae Our results highlight an I4-FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.


Assuntos
Regulação da Expressão Gênica de Plantas , Imunidade/genética , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
PLoS Genet ; 12(4): e1005990, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27082651

RESUMO

Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Autoimunidade/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/imunologia , Autoimunidade/imunologia , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Deleção de Sequência/genética
20.
EMBO J ; 33(1): 62-75, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24357608

RESUMO

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate- and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Imunidade Vegetal , Transdução de Sinais , Bactérias/imunologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Precursores de Proteínas/metabolismo , Salicilatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA