Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant J ; 117(1): 212-225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828913

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tubo Polínico/metabolismo , Pólen
2.
J Plant Res ; 136(2): 227-238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36658292

RESUMO

Light is one of the indispensable elements that plants need in order to grow and develop. In particular, it is essential for inducing morphogenesis, such as suppression of hypocotyl elongation and cotyledon expansion, that plants undergo when they first emerge after germination. However, there is a lack of knowledge about the gene expression and, in particular, the translational levels that induce a response upon light exposure. We have investigated the translational expression of nuclear genes in Arabidopsis thaliana seedlings germinated in the dark and then exposed to blue monochromatic light. In this study, ribosome profiling analysis was performed in the blue-light-receptor mutant cry1cry2 and the light-signaling mutant hy5 to understand which signaling pathways are responsible for the changes in gene expression at the translational level after blue-light exposure. The analysis showed that the expression of certain chloroplast- and ribosome-related genes was up-regulated at the translational level in the wild type. However, in both mutants the translational up-regulation of ribosome-related genes was apparently compromised. This suggests that light signaling through photoreceptors and the HY5 transcription factor are responsible for translation of ribosome-related genes. To further understand the effect of photoreception by chloroplasts on nuclear gene expression, chloroplast function was inhibited by adding a photosynthesis inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a carotenoid synthesis inhibitor, norflurazon. The results show that inhibition of chloroplast function did not lead to an increase in the expression of ribosome-related genes at the translational level. These results suggest that signals from both the nucleus and chloroplasts are required to activate translation of ribosome-related genes during blue-light reception.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese , Luz , Ribossomos/genética , Ribossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
3.
Plant J ; 106(4): 913-927, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33606325

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2 ), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7-9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Membrana Celular/enzimologia , Genes Reporter , Mutação , Pressão Osmótica , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura
4.
Plant Mol Biol ; 108(1-2): 31-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34601701

RESUMO

KEY MESSAGE: Arabidopsis PLDζ1 and PLDζ2 localize to the trans-Golgi network and to compartments including the trans-Golgi network, multi-vesicular bodies, and the tonoplast, respectively, depending on their N-terminal regions containing PX-PH domains. Phospholipase D (PLD) is involved in dynamic cellular processes, including membrane trafficking, cytoskeletal reorganization, and signal transduction for gene expression, through the production of phosphatidic acid in membrane compartments specific to each process. Although PLD plays crucial roles in various plant phenomena, the underlying processes involving PLD for each phenomenon remain largely elusive, partly because the subcellular localization of PLD remains obscure. In this study, we performed comparative subcellular localization analyses of the Arabidopsis thaliana PX-PH-PLDs PLDζ1 and PLDζ2. In mature lateral root cap cells, own promoter-driven fluorescence protein fusions of PLDζ1 localized to the entire trans-Golgi network (TGN) while that of PLDζ2 localized to punctate structures including part of the TGN and multi-vesicular bodies as well as the tonoplast. These localization patterns were reproduced using N-terminal partial proteins, which contain PX-PH domains. An inducibly overexpressed fluorescence protein fusion of the PLDζ2 partial protein first localized to punctate structures, and then accumulated predominantly on the tonoplast. Further domain dissection analysis revealed that the N-terminal moiety preceding the PX-PH domain of PLDζ2 was required for the tonoplast-predominant accumulation. These findings suggest that PLDζ1 and PLDζ2 play partially overlapping but nonetheless distinctive roles in post-Golgi compartments along the membrane trafficking pathway from the TGN to the tonoplast.


Assuntos
Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Fosfolipase D/metabolismo , Arabidopsis/metabolismo , Gravitropismo , Microscopia Confocal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
5.
Plant Cell Physiol ; 63(5): 635-648, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35348769

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is involved in regulating various cellular processes through the signaling function of its product, phosphatidylinositol (4,5)-bisphosphate. Higher plants encode a large number of PIP5Ks forming distinct clades in their molecular phylogenetic tree. Although biological functions of PIP5K genes have been analyzed intensively in Arabidopsis thaliana, it remains unclear how those functions differ across clades of paralogs. We performed comparative functional analysis of the Arabidopsis genes encoding PIP5K1, PIP5K2 and PIP5K3, of which the first two and the last belong to closely related but distinct clades, to clarify their conserved and/or differentiated functions. Genetic analysis with their single and multiple mutants revealed that PIP5K1 and PIP5K3 have non-overlapping functions, with the former in total plant growth and the latter in root hair elongation, whereas PIP5K2 redundantly functions in both phenomena. This pattern of functional redundancy is explainable in terms of the overlapping pattern of their promoter activities. In transformation rescue experiments, PIP5K3 promoter-directed PIP5K1-YFP completely rescued the short-root-hair phenotype of pip5k3. However, PIP5K3-YFP could substitute for PIP5K1-YFP only partially in rescuing the severe dwarfism of pip5k1pip5k2 when directed by the PIP5K1 promoter. Phylogenetic analysis of angiosperm PIP5Ks revealed that PIP5K3 orthologs have a faster rate of diversification in their amino-acid sequences compared with PIP5K1/2 orthologs after they arose through a eudicot-specific duplication event. These findings suggest that PIP5K3 specialized to promote root hair elongation and lost some of the protein-encoded functions retained by PIP5K1 and PIP5K2, whereas PIP5K1 differentiated from PIP5K2 only in its promoter-directed expression pattern.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Filogenia , Raízes de Plantas/metabolismo
6.
Plant Cell Physiol ; 63(3): 369-383, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016226

RESUMO

Cleavage and polyadenylation at the 3' end of the pre-mRNA is essential for mRNA function, by regulating its translatability, stability and translocation to the cytoplasm. Cleavage factor I (CFI) is a multi-subunit component of the pre-mRNA 3' end processing machinery in eukaryotes. Here, we report that plant CFI 25 subunit of CFI plays an important role in maintaining the diversity of the 3' ends of mRNA. The genome of Arabidopsis thaliana (L.) Heynh. contained four genes encoding three putative CFI subunits (AtCFI 25, AtCFI 59 and AtCFI 68), orthologous to the mammalian CFI subunits. There were two CFI 25 paralogs (AtCFI 25a and AtCFI 25b) that shared homology with human CFI 25. Two null alleles of AtCFI 25a displayed smaller rosette leaves, longer stigmatic papilla, smaller anther, earlier flowering and lower fertility compared to wild-type plants. Null alleles of AtCFI 25b, as well as, plants ectopically expressing full-length cDNA of AtCFI 25a, displayed no obvious morphological defects. AtCFI 25a was shown to interact with AtCFI 25b, AtCFI 68 and itself, suggesting various forms of CFI in plants. Furthermore, we show that AtCFI 25a function was essential for maintaining proper diversity of the 3' end lengths of transcripts coding for CFI subunits, suggesting a self-regulation of the CFI machinery in plants. AtCFI 25a was also important to maintain 3' ends for other genes to different extent. Collectively, AtCFI 25a, but not AtCFI 25b, seemed to play important roles during Arabidopsis development by maintaining proper diversity of the 3' UTR lengths.


Assuntos
Arabidopsis , Animais , Regiões 3' não Traduzidas/genética , Arabidopsis/genética , Fibrinogênio , Poliadenilação/genética
7.
Plant Cell ; 30(3): 620-637, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514943

RESUMO

In addition to the full-length transcript ARF8.1, a splice variant (ARF8.2) of the auxin response factor gene ARF8 has been reported. Here, we identified an intron-retaining variant of ARF8.2, ARF8.4, whose translated product is imported into the nucleus and has tissue-specific localization in Arabidopsis thaliana By inducibly expressing each variant in arf8-7 flowers, we show that ARF8.4 fully complements the short-stamen phenotype of the mutant and restores the expression of AUX/IAA19, encoding a key regulator of stamen elongation. By contrast, the expression of ARF8.2 and ARF8.1 had minor or no effects on arf8-7 stamen elongation and AUX/IAA19 expression. Coexpression of ARF8.2 and ARF8.4 in both the wild type and arf8-7 caused premature anther dehiscence: We show that ARF8.2 is responsible for increased expression of the jasmonic acid biosynthetic gene DAD1 and that ARF8.4 is responsible for premature endothecium lignification due to precocious expression of transcription factor gene MYB26 Finally, we show that ARF8.4 binds to specific auxin-related sequences in both the AUX/IAA19 and MYB26 promoters and activates their transcription more efficiently than ARF8.2. Our data suggest that ARF8.4 is a tissue-specific functional splice variant that controls filament elongation and endothecium lignification by directly regulating key genes involved in these processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
8.
J Plant Res ; 134(2): 279-289, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555481

RESUMO

COP9 signalosome (CSN) is a nuclear complex composed of eight distinct subunits that governs vast developmental processes in Arabidopsis thaliana (L.) Heynh. The null alleles of csn mutants display pleiotropic phenotypes that result in seedling lethality. To date, several partially complemented transgenic plants, expressing the particular CSN subunit in its corresponding null mutant allele, were utilized to bypass seedling lethality and investigate CSN regulation at later stages of development. One such transgenic plant corresponding to CSN1 subunit, fus6/CSN1-3-4, accumulates wild-type level of CSN1 and displays normal plant architecture at vegetative stage. Here we show through histological analyses that fus6/CSN1-3-4 plants display impairment of pollen development at the bicellular stage. This defect is identical to that observed in RNAi plants of SAP130, encoding a subunit of the multiprotein splicing factor SF3b. We further dissected the previously reported interaction between CSN1 and SAP130, to reveal that approximately 100 amino-acid residues located at the N-terminal end of CSN1 (CSN1NN) were essential for this interaction. In silico structure modeling demonstrated that CSN1NN could swing out towards SAP130 to dock onto its Helical Insertion protruding from the structure. These results support our model that CSN1 embeds itself within CSN protein complex through its C-terminal half and reaches out to targets through its N-terminal portion of the protein. Taken together, this is the first report to document the identical loss-of-function phenotypes of CSN1 and SAP130 during male gametogenesis. Thus, we propose that SAP130 and CSN1 coordinately regulate development of male reproductive organs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complexo do Signalossomo COP9 , Gametogênese , Masculino , Plantas Geneticamente Modificadas
9.
Plant J ; 99(4): 610-625, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30604455

RESUMO

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] serves as a subcellular signal on the plasma membrane, mediating various cell-polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant-unique plasma membrane protein with phosphoinositide-binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long-root-hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2 -producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter-driven PCaP2-green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY-2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide-binding domain PCaP2N23 , root hair-specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2-GFP. Inducibly overexpressed PCaP2-GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY-2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4-64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2-GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia
10.
Plant Cell ; 28(1): 55-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26721863

RESUMO

Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here, we report the functions of two proteins containing RNA recognition motifs, RZ-1B and RZ-1C, in Arabidopsis thaliana. RZ-1B and RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C termini. RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA binding activity of RZ-1C with SR proteins through overexpression of the C terminus of RZ-1C conferred defective phenotypes similar to those observed in rz-1b rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of RZ-1B and RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that RZ-1C directly targeted FLOWERING LOCUS C (FLC), promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cromatina/metabolismo , Genes de Plantas , Pleiotropia Genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nicotiana/citologia , Transcrição Gênica , Transcriptoma/genética
11.
Plant Cell ; 27(10): 2894-906, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26486447

RESUMO

The Arabidopsis thaliana GLABRA2 (GL2) gene encodes a transcription factor involved in the cell differentiation of various epidermal tissues. During root hair pattern formation, GL2 suppresses root hair development in non-hair cells, acting as a node between the gene regulatory networks for cell fate determination and cell differentiation. Despite the importance of GL2 function, its molecular basis remains obscure because the GL2 target genes leading to the network for cell differentiation are unknown. We identified five basic helix-loop-helix (bHLH) transcription factor genes (ROOT HAIR DEFECTIVE6 [RHD6], RHD6-LIKE1 [RSL1], RSL2, Lj-RHL1-LIKE1 [LRL1], and LRL2) as GL2 direct targets using transcriptional and posttranslational induction systems. Chromatin immunoprecipitation analysis confirmed GL2 binding to upstream regions of these genes in planta. Reporter gene analyses showed that these genes are expressed in various stages of root hair development and are suppressed by GL2 in non-hair cells. GL2 promoter-driven GFP fusions of LRL1 and LRL2, but not those of the other bHLH proteins, conferred root hair development on non-hair cells. These results indicate that GL2 directly suppresses bHLH genes with diverse functions in root hair development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Homeodomínio/genética , Modelos Biológicos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão
12.
PLoS Genet ; 10(1): e1003954, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391508

RESUMO

Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
13.
J Integr Plant Biol ; 59(9): 629-641, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28776932

RESUMO

Two yeast Brix family members Ssf1 and Ssf2, involved in large ribosomal subunit synthesis, are essential for yeast cell viability and mating efficiency. Their putative homologs exist in the Arabidopsis genome; however, their role in plant development is unknown. Here, we show that Arabidopsis thaliana SNAIL1 (AtSNAIL1), a protein sharing high sequence identity with yeast Ssf1 and Ssf2, is critical to mitosis progression of female gametophyte development. The snail1 homozygous mutant was nonviable and its heterozygous mutant was semi-sterile with shorter siliques. The mutation in SNAIL1 led to absence of female transmission and reduced male transmission. Further phenotypic analysis showed that the synchronic development of female gametophyte in the snail1 heterozygous mutant was greatly impaired and the snail1 pollen tube growth, in vivo, was also compromised. Furthermore, SNAIL1 was a nucleolar-localized protein with a putative role in protein synthesis. Our data suggest that SNAIL1 may function in ribosome biogenesis like Ssf1 and Ssf2 and plays an important role during megagametogenesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas Nucleares/fisiologia , Óvulo Vegetal/crescimento & desenvolvimento , Fertilização , Mitose , Proteínas de Plantas/biossíntese , Tubo Polínico/fisiologia , Polinização , Ribossomos/metabolismo
14.
Plant J ; 81(3): 426-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25477067

RESUMO

Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfatos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
15.
Planta ; 244(3): 725-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27146420

RESUMO

MAIN CONCLUSION: p -Methoxybenzoic acid carboxyl methyltransferase (MBMT) was isolated from loquat flowers. MBMT displayed high similarity to jasmonic acid carboxyl methyltransferases, but exhibited high catalytic activity to form methyl p -methoxybenzoate from p -methoxybenzoic acid. Volatile benzenoids impart the characteristic fragrance of loquat (Eriobotrya japonica) flowers. Here, we report that loquat produces methyl p-methoxybenzoate, along with other benzenoids, as the flowers bloom. Although the adaxial side of flower petals is covered with hairy trichomes, the trichomes are not the site of volatile benzenoid formation. Here we identified four carboxyl methyltransferase (EjMT1 to EjMT4) genes from loquat and functionally characterized EjMT1 which we found to encode a p-methoxybenzoic acid carboxyl methyltransferase (MBMT); an enzyme capable of converting p-methoxybenzoic acid to methyl p-methoxybenzoate via methylation of the carboxyl group. We found that transcript levels of MBMT continually increased throughout the flower development with peak expression occurring in fully opened flowers. Recombinant MBMT protein expressed in Escherichia coli showed the highest substrate preference toward p-methoxybenzoic acid with an apparent K m value of 137.3 µM. In contrast to benzoic acid carboxyl methyltransferase (BAMT) and benzoic acid/salicylic acid carboxyl methyltransferase, MBMT also displayed activity towards both benzoic acid and jasmonic acid. Phylogenetic analysis revealed that loquat MBMT forms a monophyletic group with jasmonic acid carboxyl methyltransferases (JMTs) from other plant species. Our results suggest that plant enzymes with same BAMT activity have evolved independently.


Assuntos
Eriobotrya/enzimologia , Éteres de Hidroxibenzoatos/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Eriobotrya/genética , Flores/enzimologia , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Análise de Sequência de DNA
16.
Plant Cell Physiol ; 56(10): 2014-23, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26272552

RESUMO

Plants have evolved various mechanisms that protect against the harmful effects of UV-B radiation (280-315 nm) on growth and development. Cyclobutane pyrimidine dimer (CPD) photolyase, the repair enzyme for UV-B-induced CPDs, is essential for protecting cells from UV-B radiation. Expression of the CPD photolyase gene (PHR) is controlled by light with various wavelengths including UV-B, but the mechanisms of this regulation remain poorly understood. In this study, we investigated the regulation of PHR expression by light with various wavelengths, in particular low-fluence UV-B radiation (280 nm, 0.2 µmol m(-2) s(-1)), in Arabidopsis thaliana seedlings grown under light-dark cycles for 7 d and then adapted to the dark for 3 d. Low-fluence UV-B radiation induced CPDs but not reactive oxygen species. AtPHR expression was effectively induced by UV-B, UV-A (375 nm) and blue light. Expression induced by UV-A and blue light was predominantly regulated by the cryptochrome-dependent pathway, whereas phytochromes A and B played a minor but noticeable role. Expression induced by UV-B was predominantly regulated by the UVR8-dependent pathway. AtPHR expression was also mediated by a UVR8-independent pathway, which is correlated with CPD accumulation induced by UV-B radiation. These results indicate that Arabidopsis has evolved diverse mechanisms to regulate CPD photolyase expression by multiple photoreceptor signaling pathways, including UVR8-dependent and -independent pathways, as protection against harmful effects of UV-B radiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Raios Ultravioleta , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Desoxirribodipirimidina Fotoliase/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Transdução de Sinais/efeitos da radiação
17.
Plant Cell ; 23(4): 1352-72, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21505066

RESUMO

In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding D-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2⁺/⁻ double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis.


Assuntos
Arabidopsis/embriologia , Ácidos Indolacéticos/metabolismo , Fosfatos de Inositol/metabolismo , Inositol/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositóis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Liases Intramoleculares/genética , Luz , Modelos Biológicos , Mutação/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Fenótipo , Folhas de Planta/embriologia , Folhas de Planta/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sementes/citologia , Sementes/genética , Estresse Fisiológico/genética
18.
Plant Cell ; 22(10): 3280-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20889913

RESUMO

Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.


Assuntos
Endosperma/crescimento & desenvolvimento , Oryza/genética , Proteínas de Armazenamento de Sementes/metabolismo , Amido/análise , Amilopectina/análise , Amilose/análise , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucanos/análise , Temperatura Alta , Dados de Sequência Molecular , Mutação , Oryza/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/genética
19.
Plant Cell Physiol ; 52(8): 1330-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680607

RESUMO

Flowering plants produce multicellular gametophytes through an elaborate regulation of gametogenesis. During female and male gametogenesis in Arabidopsis thaliana, sporogenous cells differentiate and undergo meiosis to produce megaspores and microspores, which in turn go through mitosis to develop into multicellular gametophytes. Here we report that the Arabidopsis spliceosomal protein, SPLICEOSOME-ASSOCIATED PROTEIN 130 (AtSAP130), is required for proper reproduction. AtSAP130 is encoded by two genes, AtSAP130a and AtSAP130b. Plants with reduced expression of the AtSAP130 genes, induced by RNA interference, showed a defect in fertilization. Besides functional impairment observed in the female reproductive organs, analysis focusing on pollen development revealed defects in the transition from the microspore to the bicellular stage. Our results suggest that AtSAP130a and AtSAP130b play an indispensable role in specific spatiotemporal events in reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Cruzamentos Genéticos , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genoma de Planta/genética , Germinação , Mutação/genética , Fenótipo , Filogenia , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Reprodução/fisiologia
20.
Planta ; 231(2): 491-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19915862

RESUMO

Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldzeta2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldzeta2 mutant roots. In root hydrotropism experiments, pldzeta2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDzeta2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDzeta2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Gravitropismo/fisiologia , Fosfolipase D/metabolismo , Raízes de Plantas/fisiologia , Água/fisiologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Gravitropismo/efeitos dos fármacos , Mutação/genética , Fosfolipase D/genética , Coifa/efeitos dos fármacos , Coifa/enzimologia , Coifa/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA